Citation: ZHANG Rong-Jun, QI Zhi-Mei, ZHANG Zhe. In situ Study of Self Assembly of ld Nanoparticles and Cytochrome c by Polarized Optical Waveguide Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1757-1762. doi: 10.3866/PKU.WHXB20110716 shu

In situ Study of Self Assembly of ld Nanoparticles and Cytochrome c by Polarized Optical Waveguide Spectroscopy

  • Received Date: 25 March 2011
    Available Online: 23 May 2011

    Fund Project: 国家自然科学基金(60978042, 61078039) (60978042, 61078039) 国家重点基础研究发展计划(973)(2009CB320300) (973)(2009CB320300)

  • Time-resolved polarized optical waveguide spectroscopy is a powerful technique for the kinetic study of the adsorption of metal nanoparticles and chromophore molecules. We monitored the self- assembling processes of ld nanoparticles and cytochrome c in situ and in real time using this technique. A localized surface plasmon resonance (LSPR) absorption peak for the adsorbed ld nanoparticles gradually red shifted with an increase in the number of adlayers. Moreover, the red shift of the LSPR peak detected with the transverse magnetic (TM) modes is faster than that with the transverse electric (TE) modes. We found that with the TM modes the adsorption of cytochrome c on the ld-nanoparticle adlayer results in a significant red shift of the LSPR peak and a large increase in the peak intensity. In contrast, no obvious changes in the LSPR peak were detected with the TE modes. An analysis of the experimental data verified that the adsorption kinetic behavior of the ld nanoparticles follows a diffusion- control model and cytochrome c adsorption kinetics follows a Langmuir isotherm model. The kinetic parameters for cytochrome c adsorption including the adsorption and desorption rate constants as well as the adsorption free energy were estimated by best fitting the experimental data to the Langmuir model.

  • 加载中
    1. [1]

      (1) Kim, S. H.; Skin, C. J.; Keum, S.; Keum, S. R.; Koh, K. Dyes Pigments 2007, 72, 378.  

    2. [2]

      (2) Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115, 10714.  

    3. [3]

      (3) Morgado, J.; Barbagallo, N.; Charas, A.; Alcácer, L. Synthetic Met. 2004, 141, 219.  

    4. [4]

      (4) Cai, L. T.; Tabata, H.; Kawai, T. Appl. Phys. Lett. 2000, 77, 3105.  

    5. [5]

      (5) Brust, M.; Bethell, D.; Kiely, C. J.; Schiffrin, D. J. Langmuir 1998, 14, 5425.

    6. [6]

      (6) Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Rustem, F. I.; Adam, E. C.; Andreas, T.; Maria, A. R.; George, M.W. J. Am. Chem. Soc. 2001, 123, 5075.  

    7. [7]

      (7) Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nat. Mater. 2004, 3, 317.  

    8. [8]

      (8) Zhang, H. Y.; Yan, X. J.;Wang, Y.W.; Deng, Y. H.;Wang, X. G. Polymer 2008, 49, 5504.  

    9. [9]

      (9) Krasemann, L.; Toutianoush, A.; Tieke, B. J. Membr. Sci. 2001, 181, 221.  

    10. [10]

      (10) Yamada, M.; Shiratori, S. S. Sens. Actuators B 2000, 64, 124.  

    11. [11]

      (11) Maboudian, R.; Ashurst,W. R.; Carraro, C. Sens. Actuators A 2000, 82, 219.  

    12. [12]

      (12) Ozoemena, K.; Nyokong, T. Electrochim. Acta 2002, 47, 4035.  

    13. [13]

      (13) Subramanian, A.; Irudayaraj, J.; Ryan, T. Biosens. Bioelectron. 2006, 21, 998.  

    14. [14]

      (14) Lee, M.; Kim, T.; Kim, K. H.; Kim, J. H.; Choi, M. S.; Choi, H. J.; Kohf, K. Anal. Biochem. 2002, 310, 163.  

    15. [15]

      (15) Wanichacheva, N.; Soto, E. R.; Lambert, C. R.; McGimpseyAnal,W. G. Anal. Chem. 2006, 78, 7132.  

    16. [16]

      (16) Mark, S. S.; Sandhyarani, N.; Zhu, C.; Campagnolo, C.; Batt, C. A. Langmuir 2004, 20, 6808.  

    17. [17]

      (17) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607.  

    18. [18]

      (18) Chah, S.; Hammond, M. R.; Zare, R. N. Chem. Biol. 2005, 12, 323.  

    19. [19]

      (19) mes, I.; Santos, N. C.; Oliveira, L. M. A.; Quintas, A.; Eaton, P.; Pereira, E.; Francoet, R. J. Phys. Chem. C 2008, 112, 16340.  

    20. [20]

      (20) Qi, Z. M.; Matsuda, N. J. Phys. Chem. B 2003, 107, 6873.  

    21. [21]

      (21) Deng, L.; Lu, D. F.; Qi, Z. M. Acta Phys. -Chim. Sin. 2009, 25, 2481. [邓琳, 逯丹凤, 祁志美. 物理化学学报, 2009, 25, 2481.]

    22. [22]

      (22) Deng, L.; Qi, Z. M. Acta Phys. -Chim. Sin. 2010, 26, 2672. [邓琳, 祁志美. 物理化学学报, 2010, 26, 2672.]

    23. [23]

      (23) Deng, L.; Qi, Z. M. Acta Phys. -Chim. Sin. 2010, 26, 1923. [邓琳, 祁志美. 物理化学学报, 2010, 26, 1923.]

    24. [24]

      (24) Qi, Z. M.; Zhou, H.; Matsuda, N.; Honma, I.; Shimada, K.; Takatsu, A.; Kato, K. J. Phys. Chem. B 2004, 108, 7006.  

    25. [25]

      (25) Templeton, A. C.; Chen, S.; Gross, S. M.; Murray, R.W.; Mulvaney, P. J. Phys. Chem. B 2000, 104, 564.

    26. [26]

      (26) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735.  

    27. [27]

      (27) Schmitt, J.; Machtle, P.; Eck, D.; Mohwald, H.; Helm, C. A. Langmuir 1999, 15, 3256.  

    28. [28]

      (28) Qi, Z. M.; Matsuda, N.; Santos, J.; Yoshida, T.; Takatsu, A.; Kato, K. J. Colloid Interface Sci. 2004, 271, 249.

    29. [29]

      (29) Lahav, M.; Vaskevich, A.; Rubinstein, I. Langmuir 2004, 20, 7365.  

    30. [30]

      (30) Kalyuzhny, G.; Schneeweiss, M. A.; Shanzer, A.; Vaskevich, A.; Rubinstein, I. J. Am. Chem. Soc. 2001, 123, 3177.  

    31. [31]

      (31) Kalyuzhny, G.; Vaskevich, A.; Ashkenasy, G.; Shanzer, A.; Rubinstein, I. J. Phys. Chem. B 2000, 104, 8238.  

    32. [32]

      (32) Bagelova, J.; Antal?k, M.; Tomori, Z. Biochem. Mol. Biol. Int. 1997, 43, 891.


  • 加载中
    1. [1]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    2. [2]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    15. [15]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    16. [16]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

Metrics
  • PDF Downloads(1048)
  • Abstract views(2221)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return