Citation: ZHAO Xing, ZHUANG Quan-Chao, QIU Xiang-Yun, XU Shou-Dong, SHI Yue-Li, CUI Yong-Li. Electrochemical Performance of Cr2O3/TiO2 Composite Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1666-1672. doi: 10.3866/PKU.WHXB20110715 shu

Electrochemical Performance of Cr2O3/TiO2 Composite Material for Lithium Ion Batteries

  • Received Date: 24 February 2011
    Available Online: 23 May 2011

    Fund Project: 中央高校基本科研业务费专项资金(2010LKHX03、2010QNB04、2010QNB05) (2010LKHX03、2010QNB04、2010QNB05)中国矿业大学科技攀登计划(ON090237)资助项目 (ON090237)

  • The Cr2O3/TiO2 composite material was prepared by a high-temperature solid-state reaction and its structure, morphology, and electrochemical performance were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), charge-discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). We found that TiO2 doping significantly improved the cyclic performance of Cr2O3 and the reversible capacity of the Cr2O3/TiO2 composite material was 454 mAh·g-1 after 22 charge-discharge cycles, therefore, it has a capacity retention of 73.6% and this is mainly due to TiO2 doping that significantly increases the conductivity of Cr2O3. Our results revealed that the initial large irreversible capacity and the capacity fading could be attributed to an increase in the thickness of the solid electrolyte interface (SEI) film and a reduction in the conductivity of the materials. This was caused by a volume expansion of the Cr2O3/TiO2 electrode during the first discharge process.

  • 加载中
    1. [1]

      (1) Yu, F.; Zhang, J. J.;Wang, C. Y.; Yuan, J.; Yang, Y. F.; Song, G. Z. Progress in Chemistry 2010, 22 (1), 9. [于锋, 张敬杰, 王昌胤, 袁静, 杨岩峰, 宋广智. 化学进展, 2010, 22 (1), 9.]

    2. [2]

      (2) Zhou, H. H.; Ci, Y. X.; Liu, C. Y. Progress in Chemistry 1998, 10(1), 85. [周恒辉, 慈云祥, 刘昌炎. 化学进展, 1998, 10 (1), 85.]

    3. [3]

      (3) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.  

    4. [4]

      (4) Pereira, N.; Dupont, L.; Tarascon, J. M.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150 (9), A1273.

    5. [5]

      (5) Pereira, N.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2002, 149 (3), A262.

    6. [6]

      (6) Débart, A.; Dupont, L.; Patrice, R.; Tarascon, J. M. Solid State Sci. 2006, 8, 640.  

    7. [7]

      (7) Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F. Science 2002, 296 (5575), 2012.

    8. [8]

      (8) Mauvernay, B.; Doublet, M. L.; Monconduit, L. J. Phys. Chem. Solids 2006, 67, 1252.

    9. [9]

      (9) Silva, D. C. C.; Crosnier, O.; Ouvrard, G.; Greedan, J.; Safa- Sefat, A.; Nazar, L. F. Electrochem. Solid-State Lett. 2003, 6 (8), A162.

    10. [10]

      (10) Xue, M. Z.; Fu, Z.W. Electrochem. Commun. 2006, 8 (12), 1855.

    11. [11]

      (11) Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150 (10), A1318.

    12. [12]

      (12) Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878.

    13. [13]

      (13) Hu, J.; Li, H.; Huang, X. J.; Chen, L. Q. Solid State Ionics 2006, 177, 2791.  

    14. [14]

      (14) Jamnik, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5, 5215.

    15. [15]

      (15) Hu, J.; Li, H.; Huang, X. J. Electrochem. Solid State Lett. 2005, 8 (1), A66.

    16. [16]

      (16) Chou, S. L.;Wang, J. Z.; Zhong, C.; Rahman, M. M.; Liu, H. K.; Dou, S. X. Electrochimica Acta 2009, 54, 7519.  

    17. [17]

      (17) Hassan, M. F.; Rahman, M. M.; Guo, Z. P.; Chen, Z. X.; Liu, H. K. Electrochimica Acta 2010, 55, 5006.  

    18. [18]

      (18) Wagemaker, M.; Kearley, G. J. J. Am. Chem. Soc. 2003, 125, 840.  

    19. [19]

      (19) He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9, 425.  

    20. [20]

      (20) An, L. P.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Shen, P. W. Electrochimica Acta 2008, 53, 4573.  

    21. [21]

      (21) Xu, J.;Wang, Y.; Li, Z. J. Power Sources 2008, 175, 903.  

    22. [22]

      (22) Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater. 2003, 13, 621.  

    23. [23]

      (23) Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149 (5), A627.

    24. [24]

      (24) Zhukovskii, Y. F.; Kotomin, E. A.; Balaya, P.; Maier, J. Solid State Sci. 2008, 10, 491.

    25. [25]

      (25) Zhuang, Q. C.;Wei, T.; Du, L. L. J. Phys. Chem. C 2010, 114, 8614.  

    26. [26]

      (26) Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M. Adv. Funct. Mater. 2006, 16 (17), 2281.

    27. [27]

      (27) Li, H.;Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2009, 21 (45), 4593.

    28. [28]

      (28) Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y. Progress in Chemistry 2010, 22 (6), 1044. [庄全超, 徐守冬, 邱祥云. 化学进展, 2010, 22 (6), 1044.]

    29. [29]

      (29) Zhuang, Q. C.; Chen, Z. F.; Dong, Q. F.; Jiang, Y. X.; Huang, L.; Sun, S. G. Chinese Science Bulletin 2006, 51 (9), 1055.


  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    8. [8]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    9. [9]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    13. [13]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    14. [14]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    15. [15]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(1471)
  • Abstract views(3033)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return