Citation: MAI Li-Qiang, YANG Shuang, HAN Chun-Hua, XU Lin, XU Xu, PI Yu-Qiang. Chemical Lithiation and Electroactivity of Nanomaterials[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1551-1559. doi: 10.3866/PKU.WHXB20110710 shu

Chemical Lithiation and Electroactivity of Nanomaterials

  • Received Date: 9 February 2011
    Available Online: 19 May 2011

    Fund Project: 国家自然科学基金(50702039, 51072153) (50702039, 51072153) 教育部新世纪优秀人才计划(NCET-10-0661) (NCET-10-0661)中央高校基本科研业务费专项基金(2010-II-016)资助 (2010-II-016)

  • High capacity and od cycling stability of the electrode materials are the key points to develop high-performance lithium ion battery. Based on the latest research over the world, especilly from our group, in this paper we summarized the progress in chemical lithiation and electroactivity of nanomaterials. Firstly, we introduced the preparation of high capacity nanomaterials (molybdenum oxide, vanadium oxides, selenium hydrates, etc) and the chemical problems in lithiation process. Then we summed up the progress in assembly, chemical lithiation and electroactivity of single nanowire devices and nanowire lithium ion battery. Finally, we pointed out that assembly of single nanowire (nanobelts, nanotubes, etc.) device, in situ probe of lithium ion transport, design and construction of ordered array and complex structure, investigation of lithiation mechanism, electrostatic coupling, interface interaction, etc. are effective methods to deeper exploration of the relationship between chemical lithiation and electroactivity of nanomaterials and main directions of nanoscale lithium ion battery research field.

  • 加载中
    1. [1]

      (1) odenough, J. B. J. Power Sources 2007, 174, 996.  

    2. [2]

      (2) Ma, M.; Chernova, N. A.; Toby, B. H.; Zavalij, P. Y.; Whittingham, M. S. J. Power Sources 2007, 165, 517.  

    3. [3]

      (3) Ji, X.; Lee, T.; Nazar, L. F. Nat. Mater. 2009, 8, 500.  

    4. [4]

      (4) Lee, Y.; Kim, M. G.; Cho, J. Nano Lett. 2008, 8, 957.  

    5. [5]

      (5) Huang, X. H.; Tu, J. P.; Xia, X. H.;Wang, X. L.; Xiang, J. Y. Electrochem. Commun. 2008, 10, 1288.  

    6. [6]

      (6) Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Chem. Mater. 2009, 21, 5300.  

    7. [7]

      (7) Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Nano Lett. 2010, 10, 4273.  

    8. [8]

      (8) Johnson, C. S.; Dees, D.W.; Mansuetto, M. F.; Thackeray, M. M.; Vissers, D. R. J. Power Sources 1997, 68, 570.  

    9. [9]

      (9) Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Energy Environ. Sci. 2009, 2, 638.  

    10. [10]

      (10) Zhang, Z.; Yang, J.; Nuli, Y.;Wang, B.; Xu, J. Solid State Ionics 2005, 176, 693.  

    11. [11]

      (11) Seong, I.W.; Kim, K. T.; Yoon,W. Y. J. Power Sources 2009, 189, 511.  

    12. [12]

      (12) Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Science 2010, 329, 830.  

    13. [13]

      (13) Huang, J. Y.; Zhong, L.;Wang, C. M.; Sullivan, J. P.; Xu,W.; Zhang, L. Q.; Mao, S.; Hudak, N.; Liu, X. H.; Subramanian, A. K.; Fan, H.; Qi, L.; Kushima, A.; Li, J. Science 2010, 330, 1515.  

    14. [14]

      (14) Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Nature 2007, 449, 885.  

    15. [15]

      (15) Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu,W.; Lieber, C. M. Nano Lett. 2008, 8, 386.  

    16. [16]

      (16) Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Nano Lett. 2008, 8, 3456.  

    17. [17]

      (17) Yang, Y.; Xie, C.; Ruffo, R.; Peng, H. L.; Kim, D. K.; Cui, Y. Nano Lett. 2009, 9, 4109.  

    18. [18]

      (18) Schoen, D. T.; Peng, H. L.; Cui, Y. J. Am. Chem. Soc. 2009, 131, 7973.  

    19. [19]

      (19) Cha, J. J.;Williams, J. R.; Kong, D. S.; Meister, S.; Peng, H. L.; Bestwick, A. J.; Gallagher, P.; rdon, D. G.; Cui, Y. Nano Lett. 2010, 10, 1076.  

    20. [20]

      (20) Hu, Y. F.; Chang, Y. L.; Fei, P.; Snyder, R. L.;Wang, Z. L. ACS Nano 2010, 4 (2), 1234.

    21. [21]

      (21) Xu, S.; Qin, Y.; Xu, C.;Wei, Y. G.; Yang, R. S.;Wang, Z. L. Nat. Nanotechnol. 2010, 5, 366.  

    22. [22]

      (22) Baik, J. M.; Kim, M. H.; Larson, C.; Yavuz, C. T.; Stucky, G. D.;Wodtke, A. M.; Martin, M. Nano Lett. 2009, 9, 3980.  

    23. [23]

      (23) Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Nat. Nanotechnol. 2009, 4, 824.  

    24. [24]

      (24) Wang, C. M.; Xu,W.; Liu, J.; Choi, D.; Arey, B.W.; Saraf, L. V.; Zhang, J.; Yang, Z.; Thevuthasan, S.; Baer, D. R.; Salmon, N. J. Mater. Res. 2010, 25, 1541.  

    25. [25]

      (25) Xue, X. Y.; Feng, P.;Wang, C.; Chen, Y. J.;Wang, Y. G.;Wang, T. H. Appl. Phys. Lett. 2006, 89, 022115.  

    26. [26]

      (26) Schoe, D. T.; Xie, C.; Cui, Y. J. Am. Chem. Soc. 2007, 129, 4116.  

    27. [27]

      (27) Mai, L. Q.; Chen,W.; Xu, Q.; Zhu, Q. Y.; Han, C. H.; Peng, J. F.; Solid State Commun. 2003, 126, 541.  

    28. [28]

      (28) Qi, Y. Y.; Chen,W.; Mai, L. Q.; Zhu, Q. Y.; Jin, A. P. Int. J. Electrochem. Sci. 2006, 1, 317.

    29. [29]

      (29) Chen,W.; Mai, L. Q.; Qi, Y. Y.; Dai, Y. J. Phys. Chem. Solids 2006, 67, 896.  

    30. [30]

      (30) Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19(17), 2526.

    31. [31]

      (31) Nazar, L. F.; Koene, B. E.; Britten, J. F. Chem. Mater. 1996, 8, 327.  

    32. [32]

      (32) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  

    33. [33]

      (33) Ban, C.; Chernova, N. A.; Whittingham, M. S. Electrochem. Commun. 2009, 11, 522.  

    34. [34]

      (34) Mai, L. Q.; Chen,W.; Xu, Q.; Zhu, Q. Y. Microelectron Eng. 2003, 66, 199.  

    35. [35]

      (35) Mai, L. Q.; Chen,W.; Xu, Q.; Zhu, Q. Y. Chem. Phys. Lett. 2003, 382, 307.  

    36. [36]

      (36) Mai, L. Q.; Chen,W.; Qi, Y. Y.; Dai, Y.; Jin,W. Solid State Phenomena 2007, 121-123, 789.

    37. [37]

      (37) Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotechnol. 2008, 3, 31.  

    38. [38]

      (38) Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Nano Lett. 2009, 9, 1045.

    39. [39]

      (39) Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2008, 8, 307.  

    40. [40]

      (40) Mai, L. Q.; Hu, B.; Chen,W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.;Wang, Z. L. Adv. Mater. 2007, 19, 3712.  

    41. [41]

      (41) Mai, L. Q.; Hu, B.; Qi, Y. Y.; Dai, Y.; Chen,W. Int. J. Electrochem. Sci. 2008, 3, 216.

    42. [42]

      (42) Mai, L. Q.; Gao, Y.; Guan, J. G.; Hu, B.; Xu, L.; Jin,W. Int. J. Electrochem. Sci. 2009, 4, 755.

    43. [43]

      (43) Mai, L. Q.; Lao, C. S.; Hu, B.; Zhou, J.; Qi, Y. Y.; Chen,W.; Gu, E. D.;Wang, Z. L. J. Phys. Chem. B 2006, 110, 18138.  

    44. [44]

      (44) Mai, L. Q.; Guo,W. L.; Hu, B.; Jin,W.; Chen,W. J. Phys. Chem. C 2008, 112, 423.

    45. [45]

      (45) Chen,W.; Mai, L. Q.; Qi, Y. Y.; Jin,W.; Hu, T.; Guo,W. L.; Dai, Y.; Gu, E. D. Key Eng. Mater. 2007, 336-338, 2128.

    46. [46]

      (46) Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Chem. Mater. 2009, 21, 5681.  

    47. [47]

      (47) Whittingham, M. S.; Dines, M. B. J. Electrochem. Soc. 1977, 124, 1387.  

    48. [48]

      (48) Murphya, D.W.; Greenblatt, M.; Cava, R. J.; Zahurak, S. M. Solid State Ionics 1981, 5, 327.  

    49. [49]

      (49) Li, L.; Pistoia, G. Solid State Ionics 1991, 47, 231.  

    50. [50]

      (50) Li, L.; Pistoia, G. Solid State Ionics 1991, 47, 241.  

    51. [51]

      (51) Jung,W. I.; Nagao, M.; Pitteloud, C.; Yamada, A.; Kann, R. J. Power Sources 2010, 195, 3328.  

    52. [52]

      (52) Wang, S. T.; Zhang, Y. G.; Ma, X. C.;Wang,W. Z.; Li, X. B.; Zhang, Z. D.; Qian, Y. T. Solid State Commun. 2005, 136, 283.  

    53. [53]

      (53) Bullard, J.W.; Smith, R. L. Solid State Ionics 2003, 160, 335.  

    54. [54]

      (54) Chen,W.; Qi, Y. Y.; Mai, L. Q.; Xu, Q.; Liu, H. X.; Zhao, X. J. Hydrothermal Synthesis and Electrochemical Behavior of MoO3 Nanobelts for Lithium Batteries. In Proceedings of the 10th Asian conference on Solid State Ionics, the 10th Asian conference on Solid State Ionics, Sri Lanka, Jun12-16, 2006; Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.; Eds.;World Scientific Publishing: Singapore, 2006; pp: 833-840.

    55. [55]

      (55) Tsumura, T.; Inagaki, M. Solid State Ionics 1997, 104, 183.  

    56. [56]

      (56) Subba, R. C.; Qi, Y.; Jin,W.; Zhu, Q.; Deng, Z.; Chen,W.; Mho, S. J. Solid State Electrochem. 2007, 11, 1239.  

    57. [57]

      (57) Subba, R. C.;Walker, E. H., Jr.;Wen, C.; Mho, S. J. Power Sources 2008, 183, 330.

    58. [58]

      (58) Christian, P. A.; Carides, J. N.; DiSalvo, F. J.;Waszczak, J. V. J. Electrochem. Soc. 1980, 127, 2315.  

    59. [59]

      (59) Chan, C. K.; Peng, H.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Nano Lett. 2007, 7(2), 490.

    60. [60]

      (60) Delmasa, C.; Cognac-Auradoua, H.; Cocciantellia, J. M.; Menetriera, M.; Doumerca, J. P. Solid State Ionics 1994, 69, 257.

    61. [61]

      (61) Garcia, B.; Millet, M.; Pereira-Ramos, J. P.; Baffier, N.; Bloch, D. J. Power Sources 1999, 81-82, 670.

    62. [62]

      (62) Lee, S. H.; Kim, Y. H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A.; Zhang, S.; Dillon, A. C. Adv. Mater. 2008, 20 (19), 3627.

    63. [63]

      (63) Huang, Y. H.; odenough, J. B. Chem. Mater. 2008, 20, 7237.  

    64. [64]

      (64) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  

    65. [65]

      (65) Chen, J.; Vacchio, M. J.;Wang, S.; Chernova, N.; Zavalij, P. Y.; Whittingham, M. S. Solid State Ionics 2008, 178, 1676.  

    66. [66]

      (66) Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Nano Lett. 2010, 10, 4750.  

    67. [67]

      (67) Balke, N.; Jesse, S.; Morozovska, A. N.; Eliseev, E.; Chung, D. W.; Kim, Y.; Adamczyk, L.; García, R. E.; Dudney, N.; Kalinin, S. V. Nat. Nanotechnol. 2010, 5, 749.  

    68. [68]

      (68) Brezesinski, T.;Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146.  

    69. [69]

      (69) Hu, Y. S.; Liu, X.; Müller, J. O.; Schlögl, R.; Maier, J.; Su, D. S. Chem. Int. Edit. 2009, 48, 210.


  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    8. [8]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    12. [12]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(1946)
  • Abstract views(4212)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return