Citation: ZHANG Li-Zhi, GAO Jian, ZHAO Dai-Qing, JIANG Li-Qiao, YANG Jiu-Zhong, WANG Zhan-Dong, JIN Han-Feng. Migration Pathways of Oxygen and the Formation of Oxygenated Intermediates in Oxygenated Fuel Combustion[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1809-1815. doi: 10.3866/PKU.WHXB20110706 shu

Migration Pathways of Oxygen and the Formation of Oxygenated Intermediates in Oxygenated Fuel Combustion

  • Received Date: 29 March 2011
    Available Online: 16 May 2011

    Fund Project: 国家自然科学基金(50806079) (50806079)广东省自然科学基金(8151007006000014)资助项目 (8151007006000014)

  • The combustion of oxygenated fuel produces more non-regulated pollutants which usually contain oxygen such as aldehydes than the combustion of hydrocarbon fuel. The formation of these oxygenated intermediates may be associated with the release of oxygen from the oxygenated fuel. In this paper, migration pathways of oxygen from several oxygenated fuels were investigated to obtain the formation characteristics of oxygenated intermediates. Major oxygenated intermediates and other intermediates were identified using synchrotron vacuum ultraviolet photoionization mass spectrometry in a dimethyl ether flame, an ethanol flame, and a propane flame. Their mole fractions were also evaluated. The results indicate that the oxygen from oxygenated fuel leads to an easier production of oxygenated intermediates, compared with oxygen from the oxidizer. The major oxygenated intermediate depends on the structure of the oxygenated fuel and was found to be formaldehyde in the dimethyl ether flame, and acetaldehyde in the ethanol flame. However, formaldehyde and acetaldehyde are present in low concentrations while hydrocarbon intermediates, such as ethene, ethyne, and propene, are present in high concentrations in the propane flame.

  • 加载中
    1. [1]

      (1) Natarajan, M.; Frame, E. A.; Naegeli, D.W.; Asmus, T.; Clark, W.; Garbak, J.; Manuel, A.; nzalez, D.; Liney, E.; Piel,W.; Wallace, J. P. Oxygenates for Advanced Petroleum-Based Diesel Fuels: Part 1. Screening and Selection Methodology for the Oxygenates. In Oxygenated Fuels, SAE International Fall Fuels & Lubricants Meeting & Exhibition, San Antonio, TX, USA, September, 2001; SAE paper, 2001-01-3631.

    2. [2]

      (2) Zannis, T. C.; Hountalas, D. T.; Kouremenos, D. A. Experimental Investigation to Specify the Effect of Oxygenated Additive Content and Type on DI Diesel Engine Performance and Emissions. In CI Engine Performance for Use with Alternate Fuels, SAE 2004World Congress & Exhibition, Detroit, MI, USA, March, 2004; SAE paper, 2004-01-0097.

    3. [3]

      (3) Manuel, A.; nzalez, D.; Piel,W.; Asmus, T.; Clark,W.; Garbak, J.; Liney, E.; Natarajan, M.; Naegeli, D.W.; Yost, D.; Frame, E. A.;Wallace, J. P. Oxygenates screening for Advanced Petroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions. In Oxygenated Fuels, SAE International Fall Fuels & Lubricants Meeting & Exhibition, San Antonio, TX, USA , September, 2001; SAE paper, 2001-01-3632.

    4. [4]

      (4) McCormick, R. L.; Ross, J. D.; Graboski, M. S. Environ. Sci. Technol. 1997, 31, 1144.  

    5. [5]

      (5) Litzinger, T. Stoner, M.; Hess, H. Int. J. Engine. Res. 2001, 1, 57.

    6. [6]

      (6) Chao, H. R.; Lin, T. C.; Chao, M. R. J. Hazard. Mater. 2000, 13, 39.

    7. [7]

      (7) Poulopoulos, S. G.; Samaras, D. P.; Philippopouos, C. J. Atmos. Environ. 2001, 35, 4399.  

    8. [8]

      (8) Zhang, Y. S.; Lang, J.; Mo, C. L.; Sun, H. Y.;Wu, H.W. Transactions of CSICE 2008, 26, 36. [张煜盛, 郎静, 莫春兰, 孙海英, 吴宏伟. 内燃机学报, 2008, 26, 36.]

    9. [9]

      (9) Zhao, D. Q.; Zeng, T.; Jiang, L. Q.;Wang, X. H.; Yang,W. B.; Zeng, X. J. Chinese Journal of Environmental Engineering 2008, 2, 395. [赵黛青, 曾涛, 蒋利桥, 汪小憨, 杨卫斌, 曾小军. 环境工程学报, 2008, 2, 395.]

    10. [10]

      (10) Lang, J.; Zhang, Y. S.; Zhou, X. S.;Wu, H.W. Journal of Chongqing University 2008, 7, 284.

    11. [11]

      (11) Schifter, I.; Diaz, L.; Rodriguez, R.; Salazar, L. Fuel 2011, 90, 779.  

    12. [12]

      (12) Kalberer, M.;Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A. S. H.; Fisseha, R.;Weingartner, E.; Frankevich, V.; Zenobi, R.; Baltensperger, U. Science 2004, 303, 1659.  

    13. [13]

      (13) Grosjean, E.; Grosjean, D.;Woodhouse, L. F.; Yang, Y. J. Atmos. Environ. 2002, 36, 2405.  

    14. [14]

      (14) Xu, H.; Yao, C. D.; Yuan, T.; Zhang, K.W.; Guo, H. J. Combust. Flame. DOI: 10.1016/j.combustflame.2011.01.004.

    15. [15]

      (15) Wang, J.; Struckmeier, U.; Yang, B.; Cool, T. A.; Osswald, P.; Kohse-Hoeinghaus, K.; Kasper, T.; Hansen, N.;Westmoreland, P. R. J. Phys. Chem. A 2008, 112, 9255.  

    16. [16]

      (16) Frassoldati, A.; Faravelli, T.; Ranzi, E.; Kohse-H?inghaus, K.; Westmoreland, P. R. Combust. Flame. DOI: 10.1016/j.combustflame.2010.12.015.

    17. [17]

      (17) Cool, T. A.; Nakajima, K.; Mostefaoui, T. A.; Qi, F.; Mcllroy, A.;Westmoreland, P. R.; Law, M. E.; Poisson, L.; Peterka, D. S.; Ahmed, M. J. Chem. Phys. 2003, 119, 8356.

    18. [18]

      (18) Werner, J. H.; Cool, T. A. Proc. Combust. Inst. 1998, 27, 413.

    19. [19]

      (19) McIlroy, A.; Hain, T. D.; Michelsen, H. A.; Cool, T. A. Proc. Combust. Inst. 2002, 28, 1647.

    20. [20]

      (20) Qi, F.; Yang, R.; Yang, B.; Huang, C. Q.;Wei, L. X.;Wang, J.; Sheng, L. S.; Zhang, Y.W. Rev. Sci. Instrurr. 2006, 77, 084101

    21. [21]

      (21) Li, Y. Y.; Yuan, T.; Zhang, K.W.; Yang, J. Z.; Qi, F. Journal of Engineering Thermophysics 2010, 31, 535. [李玉阳, 袁涛, 张奎文, 杨玖重, 齐飞. 工程热物理学报, 2010, 31, 535.]

    22. [22]

      (22) Cool, T. A.; Nakajima, K.; Taatjes, C. A.; McIlroy, A.; Westmoreland, P. R.; Law, M. E.; Morel, A. Proc. Combust. Inst. 2005, 30, 1681.  

    23. [23]

      (23) Hartlieb, A. T.; Atakan, B.; Hohse-Hoinghaus, K. Combust. Flame. 2000, 121, 610.  

    24. [24]

      (24) Patanker, S. V.; Spalding, D. B. Int. J. Heat Mass Transf. 1972, 15, 1787.  

    25. [25]

      (25) Yamashita, H. JSME Int. J. Ser. B-Fluids Therm. Eng. 2000, 43, 97.

    26. [26]

      (26) Zhao, D. Q.; Yamashita, H. Combust. Flame 2002, 130, 352.  

    27. [27]

      (27) Curran, H. J.; Pitz,W. J.;Westbrook, C. K. Int. J. Chem. Kinet. 1998, 30, 229.  

    28. [28]

      (28) Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet. 2000, 32, 714.

    29. [29]

      (29) Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet. 2000, 32, 741.  

    30. [30]

      (30) Marinov, N. M. Int. J. Chem. Kinet. 1999, 31, 183.  

    31. [31]

      (31) Qin, Z.W.; Lissianski,W.; Yang, H. X.; Gardiner,W. C.; Davis, S. G.;Wang, H. Proc. Combust. Inst. 2000, 28, 1663.

    32. [32]

      (32) https://www-pls.llnl. v/?url=science_and_technologychemistry-combustion

    33. [33]

      (33) Smooke, M. D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames; SpringerVerlag: Berlin, Germany, 1991; pp 1-28.

    34. [34]

      (34) Gao, J.; Zhao, D. Q.;Wang, X. H.; Jiang, L. Q.; Yang, H. L.; Yuan, T.; Yang, J. Z. Acta Phys. -Chim. Sin. 2010, 26, 23. [高健, 赵黛青, 汪小憨, 蒋利桥, 杨浩林, 袁涛, 杨玖重. 物理化学学报, 2010, 26, 23.]


  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    10. [10]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    19. [19]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    20. [20]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

Metrics
  • PDF Downloads(961)
  • Abstract views(1942)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return