Citation:
ZHANG Li-Zhi, GAO Jian, ZHAO Dai-Qing, JIANG Li-Qiao, YANG Jiu-Zhong, WANG Zhan-Dong, JIN Han-Feng. Migration Pathways of Oxygen and the Formation of Oxygenated Intermediates in Oxygenated Fuel Combustion[J]. Acta Physico-Chimica Sinica,
;2011, 27(08): 1809-1815.
doi:
10.3866/PKU.WHXB20110706
-
The combustion of oxygenated fuel produces more non-regulated pollutants which usually contain oxygen such as aldehydes than the combustion of hydrocarbon fuel. The formation of these oxygenated intermediates may be associated with the release of oxygen from the oxygenated fuel. In this paper, migration pathways of oxygen from several oxygenated fuels were investigated to obtain the formation characteristics of oxygenated intermediates. Major oxygenated intermediates and other intermediates were identified using synchrotron vacuum ultraviolet photoionization mass spectrometry in a dimethyl ether flame, an ethanol flame, and a propane flame. Their mole fractions were also evaluated. The results indicate that the oxygen from oxygenated fuel leads to an easier production of oxygenated intermediates, compared with oxygen from the oxidizer. The major oxygenated intermediate depends on the structure of the oxygenated fuel and was found to be formaldehyde in the dimethyl ether flame, and acetaldehyde in the ethanol flame. However, formaldehyde and acetaldehyde are present in low concentrations while hydrocarbon intermediates, such as ethene, ethyne, and propene, are present in high concentrations in the propane flame.
-
-
-
[1]
(1) Natarajan, M.; Frame, E. A.; Naegeli, D.W.; Asmus, T.; Clark, W.; Garbak, J.; Manuel, A.; nzalez, D.; Liney, E.; Piel,W.; Wallace, J. P. Oxygenates for Advanced Petroleum-Based Diesel Fuels: Part 1. Screening and Selection Methodology for the Oxygenates. In Oxygenated Fuels, SAE International Fall Fuels & Lubricants Meeting & Exhibition, San Antonio, TX, USA, September, 2001; SAE paper, 2001-01-3631.
-
[2]
(2) Zannis, T. C.; Hountalas, D. T.; Kouremenos, D. A. Experimental Investigation to Specify the Effect of Oxygenated Additive Content and Type on DI Diesel Engine Performance and Emissions. In CI Engine Performance for Use with Alternate Fuels, SAE 2004World Congress & Exhibition, Detroit, MI, USA, March, 2004; SAE paper, 2004-01-0097.
-
[3]
(3) Manuel, A.; nzalez, D.; Piel,W.; Asmus, T.; Clark,W.; Garbak, J.; Liney, E.; Natarajan, M.; Naegeli, D.W.; Yost, D.; Frame, E. A.;Wallace, J. P. Oxygenates screening for Advanced Petroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions. In Oxygenated Fuels, SAE International Fall Fuels & Lubricants Meeting & Exhibition, San Antonio, TX, USA , September, 2001; SAE paper, 2001-01-3632.
-
[4]
(4) McCormick, R. L.; Ross, J. D.; Graboski, M. S. Environ. Sci. Technol. 1997, 31, 1144.
-
[5]
(5) Litzinger, T. Stoner, M.; Hess, H. Int. J. Engine. Res. 2001, 1, 57.
-
[6]
(6) Chao, H. R.; Lin, T. C.; Chao, M. R. J. Hazard. Mater. 2000, 13, 39.
-
[7]
(7) Poulopoulos, S. G.; Samaras, D. P.; Philippopouos, C. J. Atmos. Environ. 2001, 35, 4399.
-
[8]
(8) Zhang, Y. S.; Lang, J.; Mo, C. L.; Sun, H. Y.;Wu, H.W. Transactions of CSICE 2008, 26, 36. [张煜盛, 郎静, 莫春兰, 孙海英, 吴宏伟. 内燃机学报, 2008, 26, 36.]
-
[9]
(9) Zhao, D. Q.; Zeng, T.; Jiang, L. Q.;Wang, X. H.; Yang,W. B.; Zeng, X. J. Chinese Journal of Environmental Engineering 2008, 2, 395. [赵黛青, 曾涛, 蒋利桥, 汪小憨, 杨卫斌, 曾小军. 环境工程学报, 2008, 2, 395.]
-
[10]
(10) Lang, J.; Zhang, Y. S.; Zhou, X. S.;Wu, H.W. Journal of Chongqing University 2008, 7, 284.
-
[11]
(11) Schifter, I.; Diaz, L.; Rodriguez, R.; Salazar, L. Fuel 2011, 90, 779.
-
[12]
(12) Kalberer, M.;Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A. S. H.; Fisseha, R.;Weingartner, E.; Frankevich, V.; Zenobi, R.; Baltensperger, U. Science 2004, 303, 1659.
-
[13]
(13) Grosjean, E.; Grosjean, D.;Woodhouse, L. F.; Yang, Y. J. Atmos. Environ. 2002, 36, 2405.
-
[14]
(14) Xu, H.; Yao, C. D.; Yuan, T.; Zhang, K.W.; Guo, H. J. Combust. Flame. DOI: 10.1016/j.combustflame.2011.01.004.
-
[15]
(15) Wang, J.; Struckmeier, U.; Yang, B.; Cool, T. A.; Osswald, P.; Kohse-Hoeinghaus, K.; Kasper, T.; Hansen, N.;Westmoreland, P. R. J. Phys. Chem. A 2008, 112, 9255.
-
[16]
(16) Frassoldati, A.; Faravelli, T.; Ranzi, E.; Kohse-H?inghaus, K.; Westmoreland, P. R. Combust. Flame. DOI: 10.1016/j.combustflame.2010.12.015.
-
[17]
(17) Cool, T. A.; Nakajima, K.; Mostefaoui, T. A.; Qi, F.; Mcllroy, A.;Westmoreland, P. R.; Law, M. E.; Poisson, L.; Peterka, D. S.; Ahmed, M. J. Chem. Phys. 2003, 119, 8356.
-
[18]
(18) Werner, J. H.; Cool, T. A. Proc. Combust. Inst. 1998, 27, 413.
-
[19]
(19) McIlroy, A.; Hain, T. D.; Michelsen, H. A.; Cool, T. A. Proc. Combust. Inst. 2002, 28, 1647.
-
[20]
(20) Qi, F.; Yang, R.; Yang, B.; Huang, C. Q.;Wei, L. X.;Wang, J.; Sheng, L. S.; Zhang, Y.W. Rev. Sci. Instrurr. 2006, 77, 084101
-
[21]
(21) Li, Y. Y.; Yuan, T.; Zhang, K.W.; Yang, J. Z.; Qi, F. Journal of Engineering Thermophysics 2010, 31, 535. [李玉阳, 袁涛, 张奎文, 杨玖重, 齐飞. 工程热物理学报, 2010, 31, 535.]
-
[22]
(22) Cool, T. A.; Nakajima, K.; Taatjes, C. A.; McIlroy, A.; Westmoreland, P. R.; Law, M. E.; Morel, A. Proc. Combust. Inst. 2005, 30, 1681.
-
[23]
(23) Hartlieb, A. T.; Atakan, B.; Hohse-Hoinghaus, K. Combust. Flame. 2000, 121, 610.
-
[24]
(24) Patanker, S. V.; Spalding, D. B. Int. J. Heat Mass Transf. 1972, 15, 1787.
-
[25]
(25) Yamashita, H. JSME Int. J. Ser. B-Fluids Therm. Eng. 2000, 43, 97.
-
[26]
(26) Zhao, D. Q.; Yamashita, H. Combust. Flame 2002, 130, 352.
-
[27]
(27) Curran, H. J.; Pitz,W. J.;Westbrook, C. K. Int. J. Chem. Kinet. 1998, 30, 229.
-
[28]
(28) Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet. 2000, 32, 714.
-
[29]
(29) Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet. 2000, 32, 741.
- [30]
-
[31]
(31) Qin, Z.W.; Lissianski,W.; Yang, H. X.; Gardiner,W. C.; Davis, S. G.;Wang, H. Proc. Combust. Inst. 2000, 28, 1663.
-
[32]
(32) https://www-pls.llnl. v/?url=science_and_technologychemistry-combustion
-
[33]
(33) Smooke, M. D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames; SpringerVerlag: Berlin, Germany, 1991; pp 1-28.
-
[34]
(34) Gao, J.; Zhao, D. Q.;Wang, X. H.; Jiang, L. Q.; Yang, H. L.; Yuan, T.; Yang, J. Z. Acta Phys. -Chim. Sin. 2010, 26, 23. [高健, 赵黛青, 汪小憨, 蒋利桥, 杨浩林, 袁涛, 杨玖重. 物理化学学报, 2010, 26, 23.]
-
[1]
-
-
-
[1]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036
-
[4]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[5]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[6]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[7]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[8]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[9]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[10]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[11]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[12]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[13]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[14]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[15]
Chunchun Wang , Changjun You , Ke Rong , Chuqi Shen , Fang Yang , Shijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045
-
[16]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[17]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[18]
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
-
[19]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[20]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[1]
Metrics
- PDF Downloads(961)
- Abstract views(1943)
- HTML views(2)