Citation:
LI You-Ji, CHEN Wei, LI Lei-Yong. Effects of Surface Areas and Adsorption Strength on the Photoactivity and Decomposition Kinetics of Acid Red 27 over TiO2-Coated/Activated Carbon Composites[J]. Acta Physico-Chimica Sinica,
;2011, 27(07): 1751-1756.
doi:
10.3866/PKU.WHXB20110701
-
TiO2-coated/activated carbon composites (TCS) were prepared by supercritical pretreatment and sol-gel processing. The prepared TCS were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analysis. The photocatalytic performances of the composites were evaluated by the decolorization of an acid red 27 solution. The results show that the TCS have higher photocatalytic activity than bare TiO2 because of the smaller crystalline size of TiO2 and the higher amount of adsorbed acid red 27 as well as hydroxyl radicals. The photocatalytic activity of TCS increased and then decreased with an increase in surface area. The kinetic behavior of the photocatalytic degradation of acid red 27 over various composites is described in terms of a modified Langmuir-Hinshelwood model. The kinetic results clearly indicate differences in the photocatalytic activity of TCS, which is mainly attributed to interactions between the surface areas and the adsorption strength. TCS3 gave the highest photocatalytic activity with an optimal adsorption strength resulting from its moderate surface areas.
-
Keywords:
-
Photocatalysis
, - Titanium dioxide,
- Carbon,
- Supercriticalness,
- Sol-gel,
- Kinetics
-
-
-
-
[1]
(1) Khodja, A. A.; Sehili, T.; Pilichowski, J. F.; Boule, P. J. Photochem. Photobiol. A: Chem. 2001, 141, 231.
-
[2]
(2) Holgado, M.; Cintas, A.; Ibisate, M.; Serna, C. J.; Lopez, C.; Meseguer, F. J. Colloid Interface Sci. 2000, 229, 6.
-
[3]
(3) Tennakone, K.; Tilakaratne, C. T. K.; Kotte da, I. R. M. Water Res. 1997, 31, 1909.
-
[4]
(4) Bhattachayya, A.; Kawi, S.; Ray, M. B. Catal. Today 2004, 98, 431.
-
[5]
(5) Xu, Y.; Zheng,W.; Liu,W. J. Photochem. Photobiol. A: Chem. 1999, 122, 57.
- [6]
-
[7]
(7) Fukahori, S.; Ichiura, H.; Kitaoka, T.; Tanaka, H. Appl. Catal. B: Environ. 2003, 46, 453.
-
[8]
(8) Tada, H.; Hattori, A.; Tokihisa, Y. J. Phys. Chem. 2000, 104, 4587.
-
[9]
(9) Foo, K. Y.; Hameed, B. H. J. Hazard. Mater. 2009, 170, 552.
-
[10]
(10) Liu, Y. Z.; Yang, S. G.; Hong, J.; Sun, C. J. Hazard. Mater. 2007, 142, 208.
-
[11]
(11) Wang, X. J.; Liu, Y. F.; Hu, Z. H.; Chen, Y. J.; Liu,W.; Zhao, G. H. J. Hazard. Mater. 2009, 169, 1061.
-
[12]
(12) Wang, X. J.; Hu, Z. H.; Chen, Y. J.; Zhao, G. H.; Liu, Y. F.;Wen, Z. B. Appl. Surf. Sci. 2009, 255, 3953.
-
[13]
(13) Zhang, X.W.; Zhou, M. H.; Lei, L. H. Mater. Chem. Phys. 2005, 91, 73.
-
[14]
(14) Zhang,W.; Zou, L. D.;Wang, L. Z. Chem. Engineer. J. 2011, 168, 485.
-
[15]
(15) Tryba, B.; Morawski, A.W.; Inagaki, M. Appl. Catal. B: Environ. 2003, 46, 203.
-
[16]
(16) Tryba, B.; Morawaki, A.W.; Inagaki, M. Appl. Catal. B: Environ. 2003, 41, 427.
-
[17]
(17) Lee, D. K.; Kim, S. C.; Cho, I. C.; Kim, S. J.; Kim, S.W. Purif. Technol. 2004, 34, 59.
-
[18]
(18) Lee, D. K.; Kim, S. C.; Kim, S. J.; Chung, I. S.; Kim, S.W. Chem. Eng. J. 2004, 102, 93.
-
[19]
(19) Uchida, H.; Itoh, S.; Yoneyama, H. Chem. Lett. 1993, 22, 1995.
-
[20]
(20) Bogdanchikova, N.; Pestryakov, A.; Farias, M. H.; Diaz, J. A.; Avalos, M.; Navarrete, J. Solid State Sciences 2008, 10, 908.
-
[21]
(21) Matos, J.; Laine, J.; Hermann, J. M. J. Catal. 2001, 200, 10.
-
[22]
(22) Wei, Z. S.; Sun, J. L.; Xie, Z. R.; Liang, M. Y.; Chen, S. Z. J. Hazard. Mater. 2010, 177, 814.
-
[23]
(23) He, C. X.; Tian, B. Z.; Zhang, J. L. J. Colloid Interface Sci. 2010, 344, 382.
-
[24]
(24) Bayati, M. R.; Moshfegh, A. Z.; lestani-Fard, F. Electrochim. Acta 2010, 55, 2760.
-
[25]
(25) Xu, Y. M.; Langford, C. H. J. Photochem. Photobiol. A: Chem. 2000, 133, 67.
-
[26]
(26) Zhu, C.;Wang, L.; Kong, L.; Yang, X.;Wang, L.; Zheng, S.; Chen, F.; Maizhi, F.; Zong, H. Chemosphere 2000, 41, 303.
-
[1]
-
-
-
[1]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[2]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[4]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[8]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[9]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[10]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[11]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[12]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[13]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[15]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[18]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[19]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[20]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[1]
Metrics
- PDF Downloads(1304)
- Abstract views(4471)
- HTML views(68)