Citation: LI You-Ji, CHEN Wei, LI Lei-Yong. Effects of Surface Areas and Adsorption Strength on the Photoactivity and Decomposition Kinetics of Acid Red 27 over TiO2-Coated/Activated Carbon Composites[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1751-1756. doi: 10.3866/PKU.WHXB20110701 shu

Effects of Surface Areas and Adsorption Strength on the Photoactivity and Decomposition Kinetics of Acid Red 27 over TiO2-Coated/Activated Carbon Composites

  • Received Date: 16 December 2010
    Available Online: 13 May 2011

    Fund Project: 国家自然科学基金(50802034) (50802034)湖南省自然科学基金(09JJ6101)资助项目 (09JJ6101)

  • TiO2-coated/activated carbon composites (TCS) were prepared by supercritical pretreatment and sol-gel processing. The prepared TCS were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analysis. The photocatalytic performances of the composites were evaluated by the decolorization of an acid red 27 solution. The results show that the TCS have higher photocatalytic activity than bare TiO2 because of the smaller crystalline size of TiO2 and the higher amount of adsorbed acid red 27 as well as hydroxyl radicals. The photocatalytic activity of TCS increased and then decreased with an increase in surface area. The kinetic behavior of the photocatalytic degradation of acid red 27 over various composites is described in terms of a modified Langmuir-Hinshelwood model. The kinetic results clearly indicate differences in the photocatalytic activity of TCS, which is mainly attributed to interactions between the surface areas and the adsorption strength. TCS3 gave the highest photocatalytic activity with an optimal adsorption strength resulting from its moderate surface areas.

  • 加载中
    1. [1]

      (1) Khodja, A. A.; Sehili, T.; Pilichowski, J. F.; Boule, P. J. Photochem. Photobiol. A: Chem. 2001, 141, 231.  

    2. [2]

      (2) Holgado, M.; Cintas, A.; Ibisate, M.; Serna, C. J.; Lopez, C.; Meseguer, F. J. Colloid Interface Sci. 2000, 229, 6.  

    3. [3]

      (3) Tennakone, K.; Tilakaratne, C. T. K.; Kotte da, I. R. M. Water Res. 1997, 31, 1909.  

    4. [4]

      (4) Bhattachayya, A.; Kawi, S.; Ray, M. B. Catal. Today 2004, 98, 431.  

    5. [5]

      (5) Xu, Y.; Zheng,W.; Liu,W. J. Photochem. Photobiol. A: Chem. 1999, 122, 57.  

    6. [6]

      (6) Yoneyama, H.; Torimoto, T. Catal. Today 2000, 58, 133.  

    7. [7]

      (7) Fukahori, S.; Ichiura, H.; Kitaoka, T.; Tanaka, H. Appl. Catal. B: Environ. 2003, 46, 453.  

    8. [8]

      (8) Tada, H.; Hattori, A.; Tokihisa, Y. J. Phys. Chem. 2000, 104, 4587.

    9. [9]

      (9) Foo, K. Y.; Hameed, B. H. J. Hazard. Mater. 2009, 170, 552.  

    10. [10]

      (10) Liu, Y. Z.; Yang, S. G.; Hong, J.; Sun, C. J. Hazard. Mater. 2007, 142, 208.  

    11. [11]

      (11) Wang, X. J.; Liu, Y. F.; Hu, Z. H.; Chen, Y. J.; Liu,W.; Zhao, G. H. J. Hazard. Mater. 2009, 169, 1061.  

    12. [12]

      (12) Wang, X. J.; Hu, Z. H.; Chen, Y. J.; Zhao, G. H.; Liu, Y. F.;Wen, Z. B. Appl. Surf. Sci. 2009, 255, 3953.  

    13. [13]

      (13) Zhang, X.W.; Zhou, M. H.; Lei, L. H. Mater. Chem. Phys. 2005, 91, 73.  

    14. [14]

      (14) Zhang,W.; Zou, L. D.;Wang, L. Z. Chem. Engineer. J. 2011, 168, 485.  

    15. [15]

      (15) Tryba, B.; Morawski, A.W.; Inagaki, M. Appl. Catal. B: Environ. 2003, 46, 203.  

    16. [16]

      (16) Tryba, B.; Morawaki, A.W.; Inagaki, M. Appl. Catal. B: Environ. 2003, 41, 427.  

    17. [17]

      (17) Lee, D. K.; Kim, S. C.; Cho, I. C.; Kim, S. J.; Kim, S.W. Purif. Technol. 2004, 34, 59.  

    18. [18]

      (18) Lee, D. K.; Kim, S. C.; Kim, S. J.; Chung, I. S.; Kim, S.W. Chem. Eng. J. 2004, 102, 93.  

    19. [19]

      (19) Uchida, H.; Itoh, S.; Yoneyama, H. Chem. Lett. 1993, 22, 1995.

    20. [20]

      (20) Bogdanchikova, N.; Pestryakov, A.; Farias, M. H.; Diaz, J. A.; Avalos, M.; Navarrete, J. Solid State Sciences 2008, 10, 908.  

    21. [21]

      (21) Matos, J.; Laine, J.; Hermann, J. M. J. Catal. 2001, 200, 10.  

    22. [22]

      (22) Wei, Z. S.; Sun, J. L.; Xie, Z. R.; Liang, M. Y.; Chen, S. Z. J. Hazard. Mater. 2010, 177, 814.  

    23. [23]

      (23) He, C. X.; Tian, B. Z.; Zhang, J. L. J. Colloid Interface Sci. 2010, 344, 382.  

    24. [24]

      (24) Bayati, M. R.; Moshfegh, A. Z.; lestani-Fard, F. Electrochim. Acta 2010, 55, 2760.  

    25. [25]

      (25) Xu, Y. M.; Langford, C. H. J. Photochem. Photobiol. A: Chem. 2000, 133, 67.  

    26. [26]

      (26) Zhu, C.;Wang, L.; Kong, L.; Yang, X.;Wang, L.; Zheng, S.; Chen, F.; Maizhi, F.; Zong, H. Chemosphere 2000, 41, 303.  


  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(1304)
  • Abstract views(4429)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return