Citation: ZHOU Jin, LI Wen, XING Wei, ZHUO Shu-Ping. Capacitive Performance of Tunable Ordered Mesoporous Carbons in Organic and H2SO4 Electrolytes[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1431-1438. doi: 10.3866/PKU.WHXB20110634 shu

Capacitive Performance of Tunable Ordered Mesoporous Carbons in Organic and H2SO4 Electrolytes

  • Received Date: 28 March 2011
    Available Online: 10 May 2011

    Fund Project: 山东省优秀中青年科学家科研奖励基金(BS2009NJ014, 2008BS09007)资助项目 (BS2009NJ014, 2008BS09007)

  • Ordered mesoporous carbon materials were prepared by doping boric acid using a hard- templating method. The capacitive performance of these carbons was investigated in organic and H2SO4 electrolytes. As demonstrated by structure analysis the prepared carbons possessed parallel mesoporous channels. The pore size increased from 3.3 to 5.7 nm and the molar fraction of oxygenated groups on the carbon surface increased from 2.0% to 5.2% with an increase in the amount of boric acid doping from 0 to 50% (molar fraction). In the organic electrolyte, the carbons mainly showed typical electric double layer capacitive performance and no visible pseudo-capacitance was induced. In H2SO4 electrolytes, BOMC-5 showed the highest specific mass capacitance of 140.9 F·g-1 and the specific surface capacitance of the prepared carbons increased with an increase in the oxygenated groups and this carbon showed visible pseudo-capacitance because of the rapid redox reactions of the oxygenated groups. The capacitance retention ratio depends on the surface chemical properties, which determines the wettability of the carbon surface and the electrolytes.

  • 加载中
    1. [1]

      (1) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Chemical Industry Press: Beijing, 2005; translated by Chen, A.,Wu, M. Q., Zhang, X. L., Gao, N.W.

    2. [2]

      [Conway, B. E. 电化学超级电容器——科学原理及技术应用. 陈艾, 吴孟强, 张绪礼, 高能武, 译. 北京: 化学工业出版社, 2005.]

    3. [3]

      (2) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk,W. Nat. Mater. 2005, 4, 366.

    4. [4]

      (3) Li, L. M.; Liu, E. H.; Li, J.; Yang, Y. J.; Shen, H. J.; Huang, Z. Z.; Xiang, X. X. Acta Phys. -Chim. Sin. 2010, 26, 1521.

    5. [5]

      [李利民, 刘恩辉, 李剑, 杨艳静, 沈海杰, 黄铮铮, 向晓霞. 物理化学学报, 2010, 26, 1521.]

    6. [6]

      (4) Ji, Q. Q.; Guo, P. Z.; Zhao. X. S. Acta Phys. -Chim. Sin. 2010, 26, 1254.

    7. [7]

      [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]

    8. [8]

      (5) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11.

    9. [9]

      (6) Liu, Y. X.; Li, L. X.; Chen, X. H.; Song, H. H. Acta Phys. -Chim. Sin. 2007, 23, 1399.

    10. [10]

      [刘宇林, 李丽霞, 陈晓红, 宋怀河. 物理化学学报, 2007, 23, 1399.]

    11. [11]

      (7) Zhou, J.; Yuan, X.; Xing,W.; Si,W.; Zhuo, S. Carbon 2010, 48, 2765.

    12. [12]

      (8) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. Lü, Y. Acta Phys. -Chim. Sin. 2011, 27, 620.

    13. [13]

      [李文, 周晋, 邢伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]

    14. [14]

      (9) Itoi, H.; Nishihara, H.; Kogure, T.; Kyotani, T. J. Am. Chem. Soc. 2011, 133, 1165.

    15. [15]

      (10) Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J. Yushin, G. J. Am. Chem. Soc. 2010, 132, 3252.

    16. [16]

      (11) Daffos, B.; Taberna, P. L.; sti, Y.; Simon, P. Fuel Cell 2010, 10, 819.

    17. [17]

      (12) Jin, J.; Tanaka, S.; Egashira, Y.; Nishiyama, N. Carbon 2010, 45, 1985.

    18. [18]

      (13) Xing,W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.;Wang, G. Q.; Hulicova-Jurcakova, D.; Yan, Z. F.; Lu, G. Q. Carbon 2009, 47, 1715.

    19. [19]

      (14) Kim,W.; Joo, J. B.; Kim, N.; Oh, S.; Kim, P.; Yi, J. Carbon 2009, 47, 1407.

    20. [20]

      (15) Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Electrochimica Acta 2005, 50, 2799.

    21. [21]

      (16) Banham, D.; Feng, F.; Burt, J.; Alsrayheen, E.; Birss, V. Carbon 2010, 48, 1056.

    22. [22]

      (17) Jiang, J.; Gao, Q.; Xia, K.; Hu, J. Microporous Mesoporous Mat. 2009, 118, 28.

    23. [23]

      (18) Li, L.; Song, H.; Chen, X. Electrochimica Acta 2006, 51, 5715.

    24. [24]

      (19) Xing,W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2006, 44, 216.

    25. [25]

      (20) Wang, D.; Li, F; Fang, H. T.; Liu. M.; Lu, G.; Cheng, H. J. Phys. Chem. B 2006, 110, 8570.

    26. [26]

      (21) Li, H. Q.; Luo, J.; Zhou, X. F.; Yu, C. Z.; Xia, Y. J. Electrochem. Soc. 2007, 154, A731.

    27. [27]

      (22) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. J. Phys. Chem. C 2008, 112, 9950.

    28. [28]

      (23) Jang, I. Y.; Muramatsu, H.; Park, K. C.; Kim, Y. J.; Endo, M. Electrochem. Commun. 2009, 11, 719.

    29. [29]

      (24) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.

    30. [30]

      (25) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.

    31. [31]

      (26) Wang, D.; Li, F.; Liu, M.; Cheng, H. M. New Carbon Materials 2007, 22, 307.


  • 加载中
    1. [1]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    14. [14]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    18. [18]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

Metrics
  • PDF Downloads(984)
  • Abstract views(2541)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return