Citation: WEN Zhen-Li, CAO Xiao-Ning, ZHOU Chun-Lan, ZHAO Lei, LI Hai-Ling, WANG Wen-Jing. Influence of Deposition Temperature on the SiNx:H Film Prepared by Plasma Enhanced Chemical Vapor Deposition[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1531-1536. doi: 10.3866/PKU.WHXB20110632 shu

Influence of Deposition Temperature on the SiNx:H Film Prepared by Plasma Enhanced Chemical Vapor Deposition

  • Received Date: 18 January 2011
    Available Online: 10 May 2011

    Fund Project: 国家高技术研究发展计划(2007AA052437) (2007AA052437)中国科学院知识创新工程重要方向项目(KGCX2-YW-382)资助 (KGCX2-YW-382)

  • Hydrogenated silicon nitride films were prepared on the p-type polished silicon substrates by the direct plasma enhanced chemical vapor deposition (PECVD). The influences of deposition temperature on the composition, optical characteristics, structural characteristics, and passivation characteristics of the SiNx:H film were studied. All the solar cell devices were fabricated using industrial state-of-art crystal silicon solar cell technology. The influence of deposition temperature on the as-fabricated cell's electrical performance is demonstrated. The refractive index of the film ranges from 1.926 to 2.231 and it increases with an increase in the deposition temperature. This shows that the Si/N mole ratio also increases with deposition temperature. The Si-H bond and the N-H bond break and form a new Si-N bond when the deposition temperature is higher. This increase in the Si-N concentration results in an increase in film density. The effective minor carrier lifetime of the coated wafer increases initially with the substrate temperature. At a temperature of 450 °C the effective minor carrier lifetime begins to decrease. This phenomenon can be explained by H extraction from the film. For all the samples, the effective minor carrier lifetime degrades with time. The SiNx:H film prepared at a deposition temperature of 450 °C shows the best anti-reflection and surface passivation properties. The electrical performance of the fully functional solar cells is also demonstrated and the optimized results are highlighted and discussed.

  • 加载中
    1. [1]

      (1) Jana, T.; Mukhopadhyay, S.; Ray, S. Sol. Energy Mater. Sol. Cells 2002, 71 (2), 197.

    2. [2]

      (2) Nijs, J. Advanced Silicon and Semiconducting Silicon-alloy Based Materials and Devices; Taylor & Francis: Bristol, 1994.

    3. [3]

      (3) Duerinckx, F.; Szlufcik, J. Sol. Energy Mater. Sol. Cells 2002, 72 (1-4), 231.

    4. [4]

      (4) Schmidt, J.; Kerr, M. Sol. Energy Mater. Sol. Cells 2001, 65 (1-4), 585.

    5. [5]

      (5) Soppe,W.; Rieffe, H.;Weeber, A. Progress in Photovoltaics-Research and Applications 2005, 13 (7), 551.

    6. [6]

      (6) Santana, G.; Morales-Acevedo, A. Sol. Energy Mater. Sol. Cells 2000, 60 (2), 135.

    7. [7]

      (7) Lauinger, T.; Moschner, J.; Aberle, A.; Hezel, R. J. Vac. Sci. Technol. A- Vacuum, Surfaces, and Films 1998, 16, 530.

    8. [8]

      (8) Yoo, J.; Dhungel, S.; Yi, J. Thin Solid Films 2007, 515 (12), 5000.

    9. [9]

      (9) Dauwe, S. Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells. Ph. D. Dissertation, Hannover University, Germany, 2004.

    10. [10]

      (10) Bustarret, E.; Bensouda, M.; Habrard, M.; Bruyere, J.; Poulin, S.; Gujrathi, S. Phys. Rev. B 1988, 38 (12), 8171.

    11. [11]

      (11) Lelievre, J.; Fourmond, E.; Kaminski, A.; Palais, O.; Ballutaud, D.; Lemiti, M. Sol. Energy Mater. Sol. Cells 2009, 93 (8), 1281.

    12. [12]

      (12) Tsu, D.; Lucovsky, G.; Mantini, M. Phys. Rev. B 1986, 33 (10), 7069.

    13. [13]

      (13) Morimoto, A.; Tsujimura, Y.; Kumeda, M.; Shimizu, T. Jpn. J. Appl. Phys 1985, 24 (11), 1394.

    14. [14]

      (14) Lanford,W.; Rand, M. J. Appl. Phys 1978, 49, 2473.

    15. [15]

      (15) Giorgis, F.; Giuliani, F.; Pirri, C.; Tresso, E.; Summonte, C.; Rizzoli, R.; Galloni, R.; Desalvo, A.; Rava, P. Philosophical Magazine Part B 1998, 77 (4), 925.

    16. [16]

      (16) Hong, J.; Kessels,W.; Soppe,W.; Rieffe, H.;Weeber, A.; van de Sanden, M. Structural Film Characteristics Related to the Passivation Properties of High-rate (> 0.5 nm/s) Plasma Deposited a-SiNx: H. In 3rdWorld Conf. on Photovoltaic Energy Conversion; Osaka, 2003; Wcpec-3 Organizing Committee: TYokyo, Japan, 2003; 1185.

    17. [17]

      (17) Soppe,W.; Hong, J.; Kessels,W.; van de Sanden, M.; Arnoldbik,W.; Schlemm, H.; Devilée1, C.; Rieffe1, H.; Schiermeier1, S.; Bultman, J.;Weeber1, A. On Combining Surface and Bulk Passivation of SiNx: H Layers for mc-Si Solar Cells. In Proc. 29th IEEE Photovoltuic Specialists Conference, New Orleans, 2002; IEEE: New York, USA, 2002; 158-161.

    18. [18]

      (18) Cuevas, A.; Chen, F.; Tan, J.; Mackel, H.;Winderbaum, S.; Roth, K. FTIR Analysis of Microwave-Excited PECVD Silicon Nitride Layers. In 4thWorld Conference on Photovoltaic Energy Conversion,Waikoloa, Hawaii, 2006; IEEE: New York, USA, 2006; 1148-1151.

    19. [19]

      (19) Weeber, A.; Rieffe, H.; Romijn, I.; Sinke,W.; Soppe,W. The Fundamental Properties of SiNx:H That Determine Its Passivating Qualities. In 31st IEEE PVSC Conf, Florida, 2005; IEEE: New York, USA, 2005; 1043-1046.

    20. [20]

      (20) Robertson, J.;Warren,W.; Kanicki, J. J. Non-Cryst. Solids 1995, 187, 297.

    21. [21]

      (21) Hezel, R.; Jaeger, K. J. Electrochem. Soc 1989, 136 (2), 518.


  • 加载中
    1. [1]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    2. [2]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    8. [8]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    9. [9]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    10. [10]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    11. [11]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    17. [17]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    18. [18]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    19. [19]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    20. [20]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

Metrics
  • PDF Downloads(1803)
  • Abstract views(2737)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return