Citation: ZHANG Li-Zhi, YANG Hao-Lin, ZHAO Dai-Qing, JIANG Li-Qiao. Influence of Methanol Addition on the Two Stage Combustion of a Dimethyl Ether/Air Mixture[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1560-1566. doi: 10.3866/PKU.WHXB20110629 shu

Influence of Methanol Addition on the Two Stage Combustion of a Dimethyl Ether/Air Mixture

  • Received Date: 19 January 2011
    Available Online: 9 May 2011

    Fund Project: 国家自然科学基金(50806079) (50806079)广东省自然科学基金(8151007006000014)资助项目 (8151007006000014)

  • A numerical study was performed to determine the effects of methanol addition on the two stage oxidation of a dimethyl ether/air mixture and on the production of formaldehyde and formic acid in a micro-flow reactor with a fixed temperature profile. The results indicate that methanol addition influences the reaction pathway for dimethyl ether oxidation at low velocity and this results in the low temperature reactions of dimethyl ether being suppressed. The low temperature reactions of dimethyl ether nearly vanish when methanol is added in the same mass fraction as dimethyl ether. The major cause of this is a decrease in the OH radical concentration. With increasing the amount of methanol the emission index of formic acid decreases sharply but the emission index of formaldehyde increases slightly at first, and then it decreases gradually. Therefore, appropriate methanol addition can result in the reduction of the emission indexes of formic acid and formaldehyde.

  • 加载中
    1. [1]

      (1) Ofner, H.; Gill, D.W. Dimethyl Ether as Fuel for CI Engines: A New Technology and Its Environmental Potential. In Alternative Fuels For Compression Ignition Engines, International Congress & Exposition, Detroit, MI, USA, February, 1998; SAE paper, 981158.

    2. [2]

      (2) Fleisch, T.; McCarthy, C.; Basu, A. A New Clean Diesel Technology: Demonstration of ULEV Emissions on a Navistar Diesel Engine Fueled with Dimethyl Ether. In International Congress & Exposition, Detroit, MI, USA, February, 1995; SAE paper, 950061.

    3. [3]

      (3) Egnell, R. Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel. In Alternative Fuels for CI Engines, SAE 2001World Congress, Detroit, MI, USA, March, 2001; SAE paper, 2001-01-0651.

    4. [4]

      (4) Yamada, H.; Suzaki, H. S.; Sakanashi, H.; Choi, N.; Tezaki, A. Combust. Flame 2005, 140, 24.  

    5. [5]

      (5) Song, C. K. Fuel 2007, 86, 1483.  

    6. [6]

      (6) Yamada, H.; Yoshii, M.; Tezaki, A. Proc. Combust. Inst. 2005, 30, 2773.  

    7. [7]

      (7) Yamada, H.; Suzaki, K.; Tezaki, A.; to, Y. Combust. Flame 2008, 154, 248.  

    8. [8]

      (8) Chen, Z.; Yao, M. F.; Zheng, Z. Q.; Zhang, B. Transactions of CSICE 2006, 24 (2), 116. [陈征, 尧命发, 郑尊清, 张波. 内燃机学报, 2006, 24 (2), 116. ]

    9. [9]

      (9) Huang, J. C.; Zhang, Q. C.; Li, X. J.; Yu, H. D.; Yu, K. X. Journal of Guangxi University 2007, 32, 362. [黄锦成, 张全长, 李献菁, 余红东, 余克橡. 广西大学学报, 2007, 32, 362. ]

    10. [10]

      (10) Liang, X.; Yao, M. F.; Zheng, Z. Q. Journal of Combustion Science and Technology 2005, 11, 149. [梁霞, 尧命发, 郑尊清. 燃烧科学与技术, 2005, 11, 149. ]

    11. [11]

      (11) Chao, H. R.; Lin, T. C.; Chao, M. R. J. Hazard. Mater. 2000, 13, 39.

    12. [12]

      (12) Poulopoulos, S. G.; Samaras, D. P.; Philippopouos, C. J. Atmos. Environ. 2001, 35, 4399.

    13. [13]

      (13) Zhang, Y. S.; Lang, J.; Mo, C. L.; Sun, H. Y.;Wu, H.W. Transactions of CSICE 2008, 26, 36. [张煜盛, 郎静, 莫春兰, 孙海英, 吴宏伟. 内燃机学报, 2008, 26, 36. ]

    14. [14]

      (14) Zhao, D. Q.; Zeng, T.; Jiang. L. Q.; Wang, X. H.; Yang,W. B; Zeng, X. J. Chinese Journal of Environmental Engineering 2008, 2 (3), 395. [赵黛青, 曾涛, 蒋利桥, 汪小憨, 杨卫斌, 曾小军. 环境工程学报, 2008, 2 (3), 395. ]

    15. [15]

      (15) Lang, J.; Zhang, Y. S.; Zhou, X. S.;Wu, H.W. Journal of Chongqing University 2008, 7, 284.

    16. [16]

      (16) Schifter, I.; Diaz, L.; Rodriguez, R.; Salazar, L. Fuel 2011, 90, 779.  

    17. [17]

      (17) Oshibe, H.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K. Combust. Flame 2010, 157, 1572.  

    18. [18]

      (18) Patanker, S. V.; Spalding, D. B. Int. J. Heat Mass Transf. 1972, 15, 1787.  

    19. [19]

      (19) Curran, H. J.; Pitz,W. J.;Westbrook, C. K. Int. J. Chem. Kinet. 1998, 30, 229.  

    20. [20]

      (20) Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet. 2000, 32, 714.

    21. [21]

      (21) Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet. 2000, 32, 741.  

    22. [22]

      (22) Held, T. J.; Dryer, F. L. Int. J. Chem. Kinet. 1998, 30, 805.  

    23. [23]

      (23) Curran, H. J.; Fischer, S. L.; Dryer, F. L.; Pitz,W. J.;Westbrook, C. K. Available from https://www-pls.llnl. v/?url=science_and_technology-chemistry-combustion-dme.


  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    9. [9]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    20. [20]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

Metrics
  • PDF Downloads(1114)
  • Abstract views(2657)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return