Citation: CONG Ye, QIN Yun, LI Xuan-Ke, DONG Zhi-Jun, YUAN Guan-Ming, CUI Zheng-Wei. Preparation and Visible Light Photocatalytic Activity of Titanium Dioxide Coated Multiwalled Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1509-1515. doi: 10.3866/PKU.WHXB20110624 shu

Preparation and Visible Light Photocatalytic Activity of Titanium Dioxide Coated Multiwalled Carbon Nanotubes

  • Received Date: 14 January 2011
    Available Online: 5 May 2011

    Fund Project: 国家自然科学基金(20803054, 50972110)资助项目 (20803054, 50972110)

  • Titanium dioxide coated multiwalled carbon nanotubes (MWCNTs) composite photocatalysts were prepared by the controllable oxidation of titanium carbide coated MWCNTs obtained by the molten salt method using MWCNTs as a reaction template and metal titanium powder as a titanium source. The effects of the molten salt reaction temperature, the molar ratio of MWCNTs to titanium powder, and the oxidation temperature on the structure and morphology of the products were investigated. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photodegra- dation of a methylene blue (MB) solution was used to evaluate the photocatalytic activity of the catalyst under visible light irradiation (λ>420 nm). The results suggest that the TiO2 coated MWCNTs keep the similar fibred morphology with the pristine MWCNTs. Uniform and fine well-dispersed TiO2 coatings on the surface of MWCNTs closely contact with the MWCNTs support and Ti-O-C chemical bonds form between them. The prepared TiO2/MWCNTs photocatalyst shows higher visible light photocatalytic activity because the MWCNTs increase the adsorption of methylene blue on the photocatalyst and an impurity state is formed close to the valence band of titanium dioxide, which can enhance the absorption and utilization of solar energy.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37.

    2. [2]

      (2) Xiao, Y.; Dang, L. Q.; An, L. Z.; Bai, S. Y.; Lei, Z. B. Chin. J. Catal. 2008, 29, 31.

    3. [3]

      [肖义, 党利琴, 安丽珍, 白士英, 雷志 斌. 催化学报, 2008, 29, 31.]

    4. [4]

      (3) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.

    5. [5]

      [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    6. [6]

      (4) Takata, T.; Domen, K. J. Phys. Chem. C 2009, 113, 19386.

    7. [7]

      (5) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2005, 5, 191.

    8. [8]

      (6) Morishita, M.; Shiraishi, Y.; Hirai, T. J. Phys. Chem. B 2006, 110, 17898.

    9. [9]

      (7) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215.

    10. [10]

      (8) Li, Y. X.;Wang, T. H.; Peng, S.Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20, 1434.

    11. [11]

      [李越湘, 王添辉, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2004, 20, 1434.]

    12. [12]

      (9) Yu, H.; Quan, X.; Chen, S.; Zhao, H.; Zhang, Y. J. Photochem. Photobio. A- Chem. 2008, 200, 301.

    13. [13]

      (10) Liu, Y.;Wang, S.;Wang, T.; Xu, Z. L.; Chen,W. X.; Jiang, J.; Wei, J. H. Chin. J. Catal. 2010, 31, 485.

    14. [14]

      [刘阳, 王晟, 王騊, 许章栋, 陈文兴, 蒋杰, 韦坚红. 催化学报, 2010, 31, 485.]

    15. [15]

      (11) Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. J. Phys. Chem. C 2007, 111, 6976.

    16. [16]

      (12) Zhang, X.; Liu, Q. Appl. Surf. Sci. 2008, 254, 4780.

    17. [17]

      (13) Xiao, X. Y.; Yang, Q. S. Journal of South China University of Technology (Natural Science Edition) 2010, 38, 29.

    18. [18]

      [肖新颜, 杨青山. 华南理工大学学报(自然科学版), 2010, 38, 29.]

    19. [19]

      (14) Li, Y.; Zhang, S.; Yu, Q.; Yin,W. Appl. Surf. Sci. 2007, 253, 9254.

    20. [20]

      (15) Wu, Y. C.; Liu, X. L.; Ye, M.; Xie, T.; Huang, X. M. Acta Phys. -Chim. Sin. 2008, 24, 97.

    21. [21]

      [吴玉程, 刘晓璐, 叶敏, 解挺, 黄新民. 物理化学学报, 2008, 24, 97.]

    22. [22]

      (16) Rincón, M. E.; Trujillo-Camacho, M. E.; Cuentas -Galle s, A. K. Catal. Today 2005, 107-108, 606.

    23. [23]

      (17) Williams G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2, 1487.

    24. [24]

      (18) Wang,W. D.; Serp, P.; Faria, J. L. Appl. Catal. B-Environ. 2005, 56, 305.

    25. [25]

      (19) Yu, H.; Quan, X.; Chen, S.; Zhao, H. J. Phys. Chem. C 2007, 111, 12987.

    26. [26]

      (20) Dai, K.; Peng, T.; Ke, D.;Wei, D. Nanotechnology 2009, 20, 125603.

    27. [27]

      (21) Cho, J.; Schaab, S.; Roether, J.; Boccaccini, A. J. Nanopart. Res. 2008, 10, 99.

    28. [28]

      (22) Dong, Z. J.; Li, X. K.; Li, N.; Jiang, Z. Y.; Hu, Z. J. Aerospace Materials & Technology 2009, 39, 58.

    29. [29]

      [董志军, 李轩科, 李楠, 姜召阳, 胡子君. 宇航材料工艺, 2009, 39, 58.]

    30. [30]

      (23) Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S. Carbon 2009, 47, 3280.

    31. [31]

      (24) An, G.; Ma,W.; Sun, Z.; Liu, Z.; Han, B.; Miao, S.; Miao, Z.; Ding, K. Carbon 2007, 45, 1795.

    32. [32]

      (25) Jitianu, A.; Cacciaguerra, T.; Berger, M. H.; Benoit, R.; Béguin, F.; Bonnamy S. Journal of Non-Crystalline Solids 2004, 345-346, 596.

    33. [33]

      (26) Ohno, T.; Tsubota, T.; Nishijima, K.; Miyamoto, Z. Chem. Lett. 2004, 33, 750.

    34. [34]

      (27) Sakthivel, S.; Kisch, H. Angew. Chem. Int. Edit. 2003, 42, 4908.


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    13. [13]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(1596)
  • Abstract views(3435)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return