Citation: ZHANG Xuan-Zhou, YANG Jun-Zhi, SONG Ping, TIAN Wen-Huai, LI Xing-Guo. Synthesis and Cyclic Hydrogenation Properties of Magnesium Ultrafine Nanoparticles Prepared by Acetylene Plasma[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1707-1711. doi: 10.3866/PKU.WHXB20110622 shu

Synthesis and Cyclic Hydrogenation Properties of Magnesium Ultrafine Nanoparticles Prepared by Acetylene Plasma

  • Received Date: 9 March 2011
    Available Online: 4 May 2011

    Fund Project: 国家自然科学基金(20971009, 20821091, 51071003) (20971009, 20821091, 51071003)国家重点基础研究发展规划(973) (2009CB939902, 2010CB631301)资助项目 (973) (2009CB939902, 2010CB631301)

  • Ultrafine Mg nanoparticles of around 40 nm in size were prepared by an acetylene plasma metal reaction, which is a revised approach of the traditional hydrogen plasma metal reaction. The morphology and the cyclic hydrogenation properties were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), specific surface area (BET) tests, and the kinetics of hydrogenation and dehydrogenation. Because of the short diffusion distance and the large specific surface area, the kinetics of hydrogenation and dehydrogenation of the small Mg nanoparticles improved. The nanostructured carbon cover on the Mg nanoparticles decreased the amount of Mg nanoparticle oxidation and also prevented the growth of Mg nanoparticles during the hydrogenation and dehydrogenation process. Therefore, the Mg ultrafine nanoparticles exhibited excellent cycling stability. Cycling tests showed little loss in hydrogen storage capacity after 30 cycles.

  • 加载中
    1. [1]

      (1) Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R. Scripta Mater. 2007, 56, 841.  

    2. [2]

      (2) Huot, J.; Liang, G.; Schulz, R. Appl. Phys. A 2001, 72, 187.  

    3. [3]

      (3) Shao, H. Y.; Xu, H. R.;Wang, Y. T.; Li, X. G. Nanotechnology 2004, 15, 269.  

    4. [4]

      (4) Shao, H. Y.; Xu, H. R.;Wang, Y. T.; Li, X. G. J. Solid State Chem. 2004, 177, 3626.  

    5. [5]

      (5) Karty, A.; Grunzweiggenossar, J.; Rudman, P. S. J. Appl. Phys. 1979, 50, 7200.  

    6. [6]

      (6) Zhang, X. Z.; Yang, R.; Qu, J. L.; Zhao,W.; Xie, L.; Tian,W. H.; Li, X. G. Nanotechnology 2010, 21, 095706.  

    7. [7]

      (7) Shao, H. Y.;Wang, Y. T.; Xu, H. R; Li, X. G. J. Solid State Chem. 2005, 178, 2211.  

    8. [8]

      (8) Xie, L.; Liu, Y.;Wang, Y. T.; Zheng, J.; Li, X. G. Acta Mater. 2007, 55, 4585.  

    9. [9]

      (9) Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. J. Alloy. Compd. 1999, 292, 247.  

    10. [10]

      (10) Huot, J.; Pelletier, J. F.; Lurio, L. B.; Sutton, M.; Schulz, R. J. Alloy. Compd. 2003, 348, 319.

    11. [11]

      (11) Shang, C. X.; Bououdina, M.; Song, Y.; Guo, Z. X. Int. J. Hydrog. Energy 2004, 29, 73.

    12. [12]

      (12) Bazzanella, N.; Checchetto, R.; Miotello, A. Appl. Phys. Lett. 2004, 85, 5212.  

    13. [13]

      (13) Hanada, N.; Ichikawa, T.; Fujii, H. J. Phys. Chem. B 2005, 109, 7188.  

    14. [14]

      (14) Bobet, J. L.; Akiba, E.; Nakamura, Y.; Darriet, B. Int. J. Hydrog. Energy 2000, 25, 987.  

    15. [15]

      (15) Friedrichs, O.; Aguey-Zinsou, F.; Fernandez, J. R. A.; Sanchez-Lopez, J. C.; Justo, A.; Klassen, T.; Bormann, R. Fernandez, A. Acta Mater. 2006, 54, 105.  

    16. [16]

      (16) Shao, H. Y.;Wang, Y. T.; Xu, H. R.; Li, X. G. Mater. Sci. Eng. B 2004, 110, 221.  

    17. [17]

      (17) Zaluska, A.; Zaluski, L.; Strom-Olsen, J. O. J. Alloy. Compd. 1999, 288, 217.  

    18. [18]

      (18) Huot, J.; Liang, G.; Boily, S.; Van Neste, A.; Schulz, R. J. Alloy. Compd. 1999, 293, 495.  

    19. [19]

      (19) Kwon, I. H.; Bobet, J. L.; Bae, J. S.; Song, M. Y. J. Alloy. Compd. 2005, 396, 264.  

    20. [20]

      (20) Varin, R. A.; Czujko, T.; Chiu, C.;Wronski, Z. J. Alloy. Compd. 2006, 424, 356.  

    21. [21]

      (21) Varin, R. A.; Czujko, T.;Wronski, Z. Nanotechnology 2006, 17, 3856.  

    22. [22]

      (22) Muller, F.; Polke, R. F. Powder Tech. 1999, 105, 2.  

    23. [23]

      (23) Koch, C. C. Nanostructured Materials 1997, 9, 13.  

    24. [24]

      (24) Aguey-Zinsou, K. F.; Ares-Fernandez, J. R. Chem. Mater. 2008, 20, 376.  

    25. [25]

      (25) de Jongh, P. E.;Wagemans, R.W. P.; Eggenhuisen, T. M.; Dauvillier, B. S.; Radstake, P. B.; Meeldijk, J. D.; Geus, J.W.; de Jong, K. P. Chem. Mater. 2007, 19, 6052.  

    26. [26]

      (26) Vigeholm, B.; Kjoller, J.; Larsen, B. J. Alloy. Compd. 1980, 74, 341.


  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    5. [5]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    7. [7]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    20. [20]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(988)
  • Abstract views(2668)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return