Citation:
DENG Ping, ZHANG Hai-Dong, JIANG Jun-Hao, JIANG Qi-Hua. Reaction Mechanism for Propylene Carbonate Prepared by KI/NH3 Catalysis from Propylene Oxide and CO2[J]. Acta Physico-Chimica Sinica,
;2011, 27(06): 1386-1392.
doi:
10.3866/PKU.WHXB20110615
-
The reaction mechanisms for the preparation of propylene carbonate (PC) from propylene oxide (PO) and CO2 in the absence of a catalyst or by catalysis using KI or KI/NH3 were studied in detail using density functional theory (DFT) at the B3LYP/6-311++G** level (I atom using the MIDIX basis set). The geometric configurations of the reactants, intermediates, transition states, and products were optimized. Vibration analysis and the intrinsic reaction coordinate (IRC) of the reactions proved that the intermediates and transition states predicted were present. The natural bond orbital (NBO) and atoms in molecules (AIM) theories were used to determine the orbital interactions and the bond nature at the same level. The results reveal that PO+CO2→M0a→TS0c→M0c→TS0c′→PC is the main reaction channel in the absence of the catalyst and it has a high energy barrier of 200.65 kJ·mol-1. The energy barrier is reduced to 187.40 kJ·mol-1 in the presence of KI, and it has a slow reaction rate. However, the energy barrier is reduced to 154.64 kJ·mol-1 and the reaction rate increases considerably upon promotion by KI/NH3, possibly because of the formation of hydrogen bonds between H in NH3 and O in CO2 or PO, which is in od agreement with the experimental results.
-
Keywords:
-
KI
, - NH3,
- Catalysis,
- Propylene oxide,
- Propylene carbonate,
- Reaction mechanism
-
-
-
-
[1]
(1) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
-
[2]
(2) Du, Y.; Kong, D. L.;Wang, H. Y.; Cai F.; Tian, J. S.;Wang, J. Q.; He, L. N. J. Mol. Catal. A: Chem. 2005, 241, 233.
-
[3]
(3) Zhao, Y.;Wang, J. J.; Xuan, X. M.; Zhuo, K. L. Acta Chim. Sin. 2006, 64, 2145.
-
[4]
[赵扬, 王键吉, 轩小明, 卓克垒. 化学学报, 2006, 64, 2145.]
-
[5]
(4) Wang, H.; Liu, S. G.; Zhang,W. Y.; Zhao, N.;Wei,W.; Sun, Y. H. Acta Chim. Sin. 2006, 64, 2409.
-
[6]
[王慧, 刘水钢, 张文郁, 赵宁, 魏伟, 孙予罕. 化学学报, 2006, 64, 2409.]
-
[7]
(5) Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
-
[8]
(6) Huang, S. Y.; Ma, J.; Li, J. P.; Zhao, L.;Wei,W.; Sun, Y. H. Catal. Commun. 2008, 9, 276.
-
[9]
(7) Zhao, X. Q.; Sun, N.;Wang, Y. J. Ind. Eng. Chem. Res. 2008, 47, 1365.
-
[10]
(8) Du, Y.; He, L. N.; Kong, D. L. Catal. Commun. 2008, 9, 1754.
-
[11]
(9) Sun, J.;Wang, L.; Zhang, S. J.; Li, Z.; Zhang, X. P.; Dai,W. B.; Mori, R. Appl. Catal. A: Gen. 2006, 256, 295.
-
[12]
(10) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526.
-
[13]
(11) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Appl. Catal. A: Gen. 2009, 363, 40.
-
[14]
(12) Sun, J.; Ren, J. Y.; Zhang, S. J.; Cheng,W. G. Tetrahedron Lett. 2009, 50, 423.
-
[15]
(13) Song, J. L.; Zhang, Z. F.; Hu, S. Q.;Wu, T. B.; Jiang, T.; Han, B. X. Green Chem. 2009, 11, 1031.
-
[16]
(14) Ji, D. F.; Lu, X. B.; He, R. Appl. Catal. A: Gen. 2000, 203, 329.
-
[17]
(15) Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Arai, M. Appl. Catal. A: Gen. 2001, 219, 259.
-
[18]
(16) Zevaco, T. A.; Janssen, A.; Dinjus, E. Arkivoc 2007, 151.
-
[19]
(17) Bu, Z.W.;Wang, Z. Q.; Qin, G.; Cui, Y. C.; Cao, S. K. Acta Chim. Sin. 2010, 68, 1871.
-
[20]
[卜站伟, 王志强, 秦刚, 崔元臣, 曹少魁. 化学学报, 2010, 68, 1871.]
-
[21]
(18) Huang, J.W.; Min, S. J. Org. Chem. 2003, 68, 6705.
-
[22]
(19) Zhou, X.; Yang, X. G.; Yao, J.;Wang, G. Y. Acta Chim. Sin. 2010, 68, 870.
-
[23]
[周喜, 杨先贵, 姚洁, 王公应. 化学学报, 2010, 68, 870.]
-
[24]
(20) Darensbourg, D. J.; Moncada, A. I. Inorg. Chem. 2008, 47, 10000.
-
[25]
(21) Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.; Moon, D.; Jang, H. G. Chem. Eur. J. 2003, 9, 678.
-
[26]
(22) Guo, C. H.;Wu, H. S.; Zhang, X. M.; Song, J. Y.; Zhang, X. J. Phys. Chem. A 2009, 113, 6710.
-
[27]
(23) Sun, H.; Zhang, D. J. Phys. Chem. A 2007, 111, 8036.
-
[28]
(24) Lee, C.; Yang,W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
[29]
(25) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
-
[30]
(26) Reed, A. E.;Weinhold, F.; Curtiss, L. A.; Pochatko, D. J. Chem. Phys. 1986, 84, 5687.
-
[31]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.02; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[32]
(28) Biegler-König, F.; Schönbohm, J.; Derdau, R.; Bayles, D.; Bader, R. F.W. AIM 2000, version 2.0; McMaster University: Hamilton, Ontario, Canada, 2002.
-
[1]
-
-
-
[1]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[2]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[3]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[4]
Wenqing Deng , Fanfeng Deng , Ting Zhang , Junjie Lin , Liang Zhao , Gang Li , Yi Pan , Jiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085
-
[5]
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
-
[6]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[7]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[8]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[9]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[10]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[11]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[12]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[13]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[14]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[15]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[16]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[17]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[18]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[19]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[20]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[1]
Metrics
- PDF Downloads(1180)
- Abstract views(4035)
- HTML views(60)