Citation:
HAN Guang-Zhan, ZHANG Chao, GAO Ji-Gang, QIAN Ping. Quantum Chemistry Study on the Stable Structures of C2H5OH(H2O)n (n=1-9) Clusters[J]. Acta Physico-Chimica Sinica,
;2011, 27(06): 1361-1371.
doi:
10.3866/PKU.WHXB20110612
-
We studied C2H5OH(H2O)n (n=1-9) clusters using density functional theory (DFT) at the B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p) level. We calculated the properties that characterize the C2H5OH (H2O)n (n=1-9) clusters and these include optimal structures, structural parameters, hydrogen bonds, binding energies, average hydrogen bond strength, natural bond orbital (NBO) charge distributions, and cluster growth rhythm, etc. The results show that the transition from two-dimensional (2-D) cyclic structure to three-dimensional (3-D) cage structure occurs at n=5. Moreover, the lowest energy structure of the C2H5OH(H2O)n (n=6) cluster is probably a magic number structure as determined by the properties of the second order difference of the binding energy, the formation energy, and the energy gap. Finally, to probe the nature of the hydrogen bond, the properties of the lowest energy structures for the C2H5OH(H2O)n (n=2-9) clusters were compared with those of pure water clusters (H2O)n (n=3-10), and our results show that the hydrogen bonds that form between water molecules in the former are similar to those in the latter.
-
-
-
[1]
(1) Travers, F.; Douzou, P. J. Phys. Chem. 1970, 74, 2243.
-
[2]
(2) Teli, S. B.; kavi, G. S.; Sairam, M.; Aminabhavi, T. M. Colloids Surf. A 2007, 301, 55.
-
[3]
(3) Odriozola, G.; Schmitt, A.; Callejas-Fernández, J.; Hidal -álvarez, R. J. Colloid Interface Sci. 2007, 310, 471.
-
[4]
(4) Martinez-Andreu, A.; Vercher, E.; Pe?a, M. P. J. Chem. Eng. Data 1999, 44, 86.
-
[5]
(5) Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O′Hare, M.; Kammen, D. M. Science 2006, 311, 506.
-
[6]
(6) Yaman, S. Energy Convers. Manage. 2004, 45, 651.
-
[7]
(7) Chum, H. L.; Overend, R. P. Fuel Process. Technol. 2001, 71, 187.
-
[8]
(8) Coccia, A.; Indovina, P. L.; Podo, F.; Viti, V. Chem. Phys. 1975, 7, 30.
-
[9]
(9) Nishi, N.; Takahashi, S.; Matsumoto, M.; Tanaka, A.; Muraya, K.; Takamuku, T.; Yamaguchi, T. J. Phys. Chem. 1995, 99, 462.
-
[10]
(10) Petrillo, C.; Onori, G.; Sacchetti, F. Mol. Phys. 1989, 67, 697. (11) Sidhu, K. S.; odfellow, J. M.; Turner, J. Z. J. Chem. Phys. 1999, 110, 7943.
-
[11]
(12) Masella, M.; Flament, J. P. J. Chem. Phys. 1998, 108, 7141.
-
[12]
(13) Katrib, Y.; Mirabel, P.; Le Calvé, S.;Weck, G.; Kochanski, E. J. Phys. Chem. B 2002, 106, 7237.
-
[13]
(14) Oliveira, B. G.; Vasconcellos, M. J. Mol. Struct. –Theochem 2006, 774, 83.
-
[14]
(15) Wakisaka, A.; Matsuura, K. J. Mol. Liq. 2006, 129, 25.
-
[15]
(16) Mejia, S. M.; Espinal, J. F.; Restrepo, A.; Mondra n, F. J. Phys. Chem. A 2007, 111, 8250.
-
[16]
(17) Mejía, S. M.; Espinal, J. F.; Mondragón, F. J. Mol. Struct. -Theochem 2009, 901, 186.
-
[17]
(18) Nedi?, M.;Wassermann, T. N.; Xue, Z. F.; Zielke, P.; Suhm, M. A. Phys. Chem. Chem. Phys. 2008, 10, 5953.
-
[18]
(19) Zhanpeisov, N. U.; Takanashi, S.; Kajimoto, S.; Fukumura, H. Chem. Phys. Lett. 2010, 491, 151.
-
[19]
(20) nzález, L.; M??, O.; Yá?ez, M.; Elguero, J. J. Mol. Struct. -Theochem 1996, 371, 1.
-
[20]
(21) Guerra, C. F.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. J. Am. Chem. Soc. 2000, 122, 4117.
-
[21]
(22) Tsuzuki, S.; L?thi, H. J. Chem. Phys. 2001, 114, 3949.
-
[22]
(23) Wu, X.; Vargas, M.; Nayak, S.; Lotrich, V.; Scoles, G. J. Chem. Phys. 2001, 115, 8748.
-
[23]
(24) Johnson, E.; DiLabio, G. Chem. Phys. Lett. 2006, 419, 333.
-
[24]
(25) Mirzaei, M.; Hadipour, N. L. J. Phys. Chem. A 2006, 110, 4833.
-
[25]
(26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[26]
(27) Borowski, P.; Janowski, T.;Wolinski, K. Mol. Phys. 2000, 98, 1331.
-
[27]
(28) Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc. 1971, 38, 33.
-
[28]
(29) Culot, J. P. Symposium on Gas Phase Molecular Structure, 4th ed.; Austin, 1972, paper T8.
-
[29]
(30) Fileti, E. E.; Chaudhuri, P.; Canuto, S. Chem. Phys. Lett. 2004, 400, 494.
-
[30]
(31) Qian, P.; Song,W.; Lu, L.; Yang, Z. Z. Int. J. Quantum Chem. 2010, 110, 1923.
-
[31]
(32) Qian, P.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2006, 22, 561.
-
[32]
[钱萍, 杨忠志. 物理化学学报, 2006, 22, 561.]
-
[33]
(33) Wang, G. H. Cluster Physics; Shanghai Scientific & Technical Publisher: Shanghai, 2003.
-
[34]
[王广厚. 团簇物理学. 上海: 上海科学技术出版社, 2003.]
-
[35]
(34) Yang, H.; Zhao, F.; Zhou, P.;Wang, Q. J.; Zhang, Y. E.; Hu,W. J. Journal of Xihua University: Natural Science Edition 2008, 27, 63.
-
[36]
[杨华, 赵飞, 周鹏, 王全军, 张艳娥, 胡维军. 西华大学学报(自然科学版), 2008, 27, 63.]
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[3]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[6]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[9]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[10]
Yanfen PENG , Xinyue WANG , Tianbao LIU , Xiaoshuo WU , Yujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018
-
[11]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[12]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[13]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[14]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[15]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[16]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[17]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[18]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[19]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[20]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[1]
Metrics
- PDF Downloads(1214)
- Abstract views(3618)
- HTML views(5)