Citation: SUN Lei, BAI Fu-Quan, ZHANG Hong-Xing. Theoretical Investigation of Chemically Enhanced Mechanism of SERS Spectroscopy for Ag/MPH/TiO2 System[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1335-1340. doi: 10.3866/PKU.WHXB20110602 shu

Theoretical Investigation of Chemically Enhanced Mechanism of SERS Spectroscopy for Ag/MPH/TiO2 System

  • Received Date: 28 February 2011
    Available Online: 15 April 2011

    Fund Project: 国家自然科学基金(20973076, 21003057)资助项目 (20973076, 21003057)

  • A chemically enhanced mechanism of surface-enhanced Raman scattering (SERS) spectroscopy was investigated using density functional theory (DFT). We studied the Raman spectra of the Ag13/MPH and Ag13/MPH/TiO2 systems under 514.5 nm excitation. We found that the intensities of the non-totally symmetric vibration modes were selectively enhanced after TiO2 was introduced into the Ag13/MPH system. By analyzing the ground state and excited states of the charge transfer (CT) complex we found that the system gave a photoinduced CT state from Ag to the MPH-TiO2 complex when the excitation wavelength exceeded the optical absorption threshold (635 nm) of the MPH-TiO2 complex. The selective enhancement of the b2 modes in the SERS spectra probably originates from the Herzberg-Teller mechanism through the coupling of the corresponding modes with the CT transition. Our theoretical results support the experimental results and also define the adsorption threshold of the CT complex clearly while providing an intelligible physical explanation for the laser wavelength-dependent SERS phenomenon.

  • 加载中
    1. [1]

      (1) Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin- en, Q. Q.; Chen, G. Z.; Shin, D. M.; Yang, L. L.; Young, A. N.;Wang, M. D.; Nie, S. M. Nat. Biotechnol. 2008, 26, 83.

    2. [2]

      (2) Deckert, V.; George, M.W.; Umapathy, S. J. Raman Spectrosc. 2008, 39, 1508.

    3. [3]

      (3) Tian, Z. Q.; Ren, B.;Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463.

    4. [4]

      (4) Grabbe, E. S.; Buck, R. P. J. Am. Chem. Soc. 1989, 111, 8362.

    5. [5]

      (5) Nie, S. M.; Emory, S. R. Science 1997, 275, 1102.

    6. [6]

      (6) Haran, G. Accounts Chem. Res. 2010, 43, 1135.

    7. [7]

      (7) Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann,W. J. Phys.: Condens. Matter 1992, 4, 1143.

    8. [8]

      (8) Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem. 1994, 98, 12702.

    9. [9]

      (9) Kim, N. J.; Lin, M. S.; Hu, Z. Q.; Li, H. Chem. Commun. 2009, 6246.

    10. [10]

      (10) Moskovits, M. J. Raman Spectrosc. 2005, 36, 485.

    11. [11]

      (11) Lombardi, J. R.; Birke, R. L. Accounts Chem. Res. 2009, 42, 734.

    12. [12]

      (12) Zhou, Q.; Li, X.W.; Fan, Q.; Zhang, X. X.; Zheng, J.W. Angew. Chem. Int. Edit. 2006, 45, 3970.

    13. [13]

      (13) Richter, A. P.; Lombardi, J. R.; Zhao, B. J. Phys. Chem. C 2010, 114, 1610.

    14. [14]

      (14) Zhao, B.; Xu,W. Q.; Ruan,W. D.; Han, X. X. Chem. J. Chin. Univ. 2008, 29, 2591.

    15. [15]

      [赵冰, 徐蔚青, 阮伟东, 韩晓霞. 高等学校化学学报, 2008, 29, 2591.]

    16. [16]

      (15) Hu, X. G.;Wang, T.;Wang, L.; Dong, S. J. J. Phys. Chem. C 2007, 111, 6962.

    17. [17]

      (16) Shi, J. Z.; Fang, J. H.; Mu, R.W.; Li, Y. L. Acta Phys. -Chim. Sin. 2006, 22, 135.

    18. [18]

      [施建珍, 方靖淮, 沐仁旺, 李雅丽. 物理化学学报, 2006, 22, 135.]

    19. [19]

      (17) Shegai, T.; Vaskevich, A.; Rubinstein, I.; Haran, G. J. Am. Chem. Soc. 2009, 131, 14390.

    20. [20]

      (18) Musumeci, A.; sztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Rajh, T. J. Am. Chem. Soc. 2009, 131, 6040.

    21. [21]

      (19) Li, J. F.; Hu, J.W.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2005, 21, 825.

    22. [22]

      [李剑锋, 胡家文, 任斌, 田中群. 物理化学学报, 2005, 21, 825.]

    23. [23]

      (20) Ji,W.; Xue, X. X.; Ruan,W. D.;Wang, C. X.; Ji, N.; Chen, L.; Li, Z. S.; Song,W.; Zhao, B.; Lombardi, J. R. Chem. Commun. 2010, 47, 2426.

    24. [24]

      (21) Lombardi, J. R.; Birke, R. L.; Lu, T. H.; Xu, J. J. Chem. Phys. 1986, 84, 4174.

    25. [25]

      (22) Lombardi, J. R.; Birke, R. L. J. Phys. Chem. C 2008, 112, 5605.

    26. [26]

      (23) Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J. Phys. Chem. C 2009, 113, 18212.

    27. [27]

      (24) Sun, M.; Xu, H. X. ChemPhysChem 2009, 10, 392.

    28. [28]

      (25) Johannes, N.; Markus, R.; Carsten, K.; Bernd, A. H. J. Comput. Chem. 2002, 23, 895.

    29. [29]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2010.


  • 加载中
    1. [1]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    14. [14]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    15. [15]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    16. [16]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    17. [17]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    18. [18]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

Metrics
  • PDF Downloads(1151)
  • Abstract views(2960)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return