Citation: LI Miao-Miao, SHEN Rui-Qi, LI Feng-Sheng. Molecular Dynamics Simulation of Binding Energies, Mechanical Properties and Energetic Performance of the RDX/BAMO Propellant[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1379-1385. doi: 10.3866/PKU.WHXB20110601 shu

Molecular Dynamics Simulation of Binding Energies, Mechanical Properties and Energetic Performance of the RDX/BAMO Propellant

  • Received Date: 21 January 2011
    Available Online: 15 April 2011

    Fund Project: 江苏省博士后基金(0902018C)资助项目 (0902018C)

  • Molecular dynamics (MD) simulations were performed to investigate the well-known energetic material cyclotrimethylene trinitramine (RDX) crystal, 3,3′-bis-azidomethyl-oxetane (BAMO) and the RDX/BAMO propellant. The results show that the binding energies of RDX with BAMO on different crystalline surfaces change as follows: (010)>(100)>(001). The interactions between RDX and BAMO were analyzed by pair correlation functions g(r). The mechanical properties of the RDX/BAMO propellant, such as the elastic coefficients, modulus, Cauchy pressure, and Poisson's ratio, were obtained. We find that the mechanical properties are effectively improved by adding some BAMO polymer and the overall effect of BAMO on the three crystalline surfaces of RDX changes as follows: (100)>(001)>(010). The energetic performance of the RDX/BAMO propellant was also calculated and the results show that compared with the pure RDX crystal, the standard theoretical specific impulse (Isp) of the RDX/BAMO propellant decreases but it is still superior to that of the double base propellant.

  • 加载中
    1. [1]

      (1) Luca, L. D.; Cozzi, F.; Germiniasi, G. Combust. Flame 1999, 118, 248.

    2. [2]

      (2) Oyumi, Y.; Brill, T. B. Combust. Flame 1986, 65, 127.

    3. [3]

      (3) Chen, J. K.; Brill, T. B. Combust. Flame 1991, 87, 157.

    4. [4]

      (4) Miyazaki, T.; Kubota, N. Propell. Explos. Pyrotech. 1992, 17, 5.

    5. [5]

      (5) Oyumi, Y.; Inokami, K.; Yamazaki, K.; Matsumoto, K. Propell. Explos. Pyrotech. 1993, 18, 62.

    6. [6]

      (6) Shen, S. M.; Chiu, Y. S.;Wang, S.W.; Chen, S. I. Thermochim. Acta 1993, 221, 275.

    7. [7]

      (7) Kimura, E.; Oyumi, Y. Propell. Explos. Pyrotech. 1995, 20, 322.

    8. [8]

      (8) Kubota, N. J. Propul. Power 1995, 11, 677.

    9. [9]

      (9) Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S. J. Appl. Polym. Sci. 1995, 58, 579.

    10. [10]

      (10) Oyumi, Y.; Kimura, E.; Nagayama, K. Propell. Explos. Pyrotech. 1998, 23, 123.

    11. [11]

      (11) Pisharath, S.; Ang, H. G. Polym. Degrad. Stabil. 2007, 92, 1365.

    12. [12]

      (12) Zhai, J.; Yang, R.; Li, J. Combust. Flame 2008, 154, 473.

    13. [13]

      (13) Material Studio 3.0 discover/Accelrys; CA: San Die , 2004.

    14. [14]

      (14) Choi, C. S.; Prince, E. Acta Crystallogr. B 1972, 28, 2857.

    15. [15]

      (15) Sun, H.; Ren, P.; Fried, J. R. Comput. Theor. Polym. Sci. 1998, 8, 229.

    16. [16]

      (16) Bunte, S.W.; Sun, H. J. Phys. Chem. B 2000, 104, 2477.

    17. [17]

      (17) Yang, J.; Ren, Y.; Tian, A. m.; Sun, H. J. Phys. Chem. B 2000, 104, 4951.

    18. [18]

      (18) Mcquaid, M. J.; Sun, H.; Rigby, D. J. Comput. Chem. 2004, 25, 61.

    19. [19]

      (19) Sun, H. J. Phys. Chem.B 1998, 102, 7338.

    20. [20]

      (20) Zhu,W.; Xiao, J.; Zhu,W.; Xiao, H. J. Hazard. Mater. 2009, 164, 1082.

    21. [21]

      (21) Xu, X. J.; Xiao, H. M.; Xiao, J. J.; Zhu,W.; Huang, H.; Li, J. S. J. Phys. Chem. B 2006, 110, 7203.

    22. [22]

      (22) Qiu, L.; Zhu,W. H.; Xiao, J. J.; Zhu,W.; Xiao, H. M.; Huang, H.; Li, J. S. J. Phys. Chem. B 2007, 111, 1559.

    23. [23]

      (23) Zhu,W.;Wang, X.; Xiao, J.; Zhu,W.; Sun, H.; Xiao, H. J. Hazard. Mater. 2009, 167, 810.

    24. [24]

      (24) Xiao, J.; Huang, H.; Li, J.; Zhang, H.; Zhu,W.; Xiao, H. J. Mol. Struct. -Theothem 2008, 851, 242.

    25. [25]

      (25) Qiu, L.; Xiao, H. J. Hazard. Mater. 2009, 164, 329.

    26. [26]

      (26) Andersen, H. C. J. Chem. Phys. 1980, 72, 2384.

    27. [27]

      (27) Weiner, J. H. Statistical Mechanics of Elasticity; JohnWiley: New York, 2002.

    28. [28]

      (28) Pugh, S. F. Philos. Mag. Series 7 1954, 45, 823.

    29. [29]

      (29) Weiner, J. H. Statistical Mechanics of Elasticity; JohnWiley: New York, 1983.

    30. [30]

      (30) Tian, D.; Liu, J. Energetics Calculation of Chemical Propellants; Henan Scientific and Technical Publishers: Zhengzhou, 1999.


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    16. [16]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    20. [20]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

Metrics
  • PDF Downloads(1344)
  • Abstract views(2390)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return