Citation: JIANG Jing-Jing, LONG Ming-Ce, WU De-Yong, CAI Wei-Min. Preparation of F-Modified Nanosized TiO2 and Its Methyl Orange Photodegradation Mechanism[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1149-1156. doi: 10.3866/PKU.WHXB20110520 shu

Preparation of F-Modified Nanosized TiO2 and Its Methyl Orange Photodegradation Mechanism

  • Received Date: 20 October 2010
    Available Online: 8 April 2011

    Fund Project: 高等学校博士学科点专项科研基金新教师基金(20090073120042)资助项目 (20090073120042)

  • Fluorine-modified nanosized TiO2 (F-TiO2) was prepared by a facile precipitation-fluorination- reflux method. Characterizations of transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS) were carried out to investigate various properties of the as-prepared F-TiO2 powder. We found that the F-TiO2 particles were small (5-8 nm) and ellipsoidal in shape. The presence of fluorine not only suppressed the formation of a brookite phase, but also improved the crystallinity of the anatase phase. The fluorine atoms were mainly distributed on the surface of TiO2, and existed in both forms of chemical-adsorption and interstitial-doping. Compared to pure titania, the fluorine-modified TiO2 powder showed a much higher methyl orange (MO) degradation efficiency under UV light and under visible light. Through the experiments of alkaline washing and heat treatment, we found that the increased MO degradation rate under visible light irradiation was caused by the enhanced self- degradation of the dye over the surface-modified TiO2.

  • 加载中
    1. [1]

      (1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.

    2. [2]

      (2) Xu, J. J.; Ao, Y. H.; Fu, D. G.; Yuan, C. W. Appl. Surf. Sci. 2008, 254, 3033.

    3. [3]

      (3) Tang, J. W.; Quan, H. D.; Ye, J. H. Chem. Mater. 2007, 19, 116.

    4. [4]

      (4) Li, J. Y.; Ma, J. H.; Bai, T. Y.; Suyou, L. M. Acta Phys.-Chim. Sin. 2007, 23, 1213.

    5. [5]

      [李静谊, 马俊华, 白图雅, 苏优乐玛. 物理化学学报, 2007, 23, 1213.]

    6. [6]

      (5) Li, D.; Ohashi, N.; Hishita, S.; Kolodiazhnyi, T.; Haneda, H. J. Solid State Chem. 2005, 178, 3293.

    7. [7]

      (6) Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N. Chem. Phys. Lett. 2005, 401, 579.

    8. [8]

      (7) Ho, W.; Yu, J. C.; Lee, S. Chem. Commun. 2006, 1115.

    9. [9]

      (8) Ren, G.; Gao, Y.; Liu, X. ; Xing, A.; Liu, H.; Yin, J. Reac. Kinet. Mech. Cat. 2010, 100, 487.

    10. [10]

      (9) Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J. Langmuir 2008, 24, 7338.

    11. [11]

      (10) Huang, D. G.; Liao, S. J.; Dang, Z. Acta Chim. Sin. 2006, 64, 1805.

    12. [12]

      [黄冬根, 廖世军, 党 志. 化学学报, 2006, 64, 1805.]

    13. [13]

      (11) Ren, D. S.; Cui, X. L.; Zhang, Q.; Yang, X. L.; Zhang, Z. J. Vac. Sci. Technol. (China) 2002, 22, 421.

    14. [14]

      [任达森, 崔晓莉, 张 群, 杨锡良, 章壮健. 真空科学与技术, 2002, 22, 421.]

    15. [15]

      (12) Park, H.; Choi, W. J. Phys. Chem. B, 2004, 108, 4086.

    16. [16]

      (13) Zhu, S. Y.; Huo, M. X.; Zhang, L. L.; Yu, Q.; Wang, T. Z. Science and Technology Review 2010, 28, 112.

    17. [17]

      [朱遂一, 霍明昕, 张蕾蕾, 于 琪, 王天竹. 科技导报, 2010, 28, 112.]

    18. [18]

      (14) Bezrodna, T.; Puchkovska, G.; Shimanovska, V.; Chashechnikova, I.; Khalyavka, T.; Baran, J. Appl. Surf. Sci. 2003, 214, 222.

    19. [19]

      (15) Hung, W. C.; Fu, S. H.; Tseng, J. J.; Chu, H.; Ko, T. H. Chemosphere 2007, 66, 2142.

    20. [20]

      (16) Su, H. D. Preparation and Photocatalytic Activity of Titanium Dioxide Photocatalyst. Ph. D. Dissertation, Northeastern University, Liaoning, 2005.

    21. [21]

      [苏会东. 二氧化钛光催化剂的制备及其性能研究

    22. [22]

      [D]. 辽宁: 东北大学, 2005.]

    23. [23]

      (17) Chen, Y. M.; Zhong, J.; Chen, F.; Zhang, J. L. Chin. J. Catal. 2010, 31, 120.

    24. [24]

      [陈艳敏, 钟 晶, 陈 锋, 张金龙. 催化学报, 2010, 31, 120.]

    25. [25]

      (18) Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Di Valentin, C.; Pacchioni, G. J. Phys. Chem. C 2008, 112, 8951.

    26. [26]

      (19) Zhu, M. H. Instrumental Analysis, 3rd ed.; Higher Education Press: Beijing, 2000; p 275.

    27. [27]

      [朱明华. 仪器分析(第三版); 北京: 高等教育出版社, 2000: 275.]

    28. [28]

      (20) Yu, J. C.; Yu, J. G.; Ho, W.; Jiang, Z.; Zhang, L. Chem. Mater. 2002, 14, 3808.

    29. [29]

      (21) Liu, G.; Wu, T.; Zhao, J.; Hidaka, H.; Surpone, N. Environ. Sci. Technol. 1999, 33, 2081.

    30. [30]

      (22) Chen, C.; Zhao, W.; Li, J.; Zhao, J. C.; Hidaka, H.; Surpone, N. Environ. Sci. Technol. 2002, 36, 3604.

    31. [31]

      (23) Christine, M. D.; Joseph, R.; Jacques, J. V. Inorg. Chem. 1987, 26, 1212.

    32. [32]

      (24) Arichi, J.; Louis, B. Cryst. Growth Des. 2008, 8, 3999.

    33. [33]

      (25) Louis, B.; Lioubov K.-M. Microporous Mesoporous Mat. 2004, 74, 171.

    34. [34]

      (26) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.

    35. [35]

      (27) Vohra, M.; Kim, S.; Choi, W. J. Photochem. Photobiol. A 2003, 160, 55.

    36. [36]

      (28) Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes; Plenum Press: New York, 1980; p 154.

    37. [37]

      (29) You, X. F.; Chen, F.; Zhang, J. L.; Huang, J. Z.; Zhang, L. Z. Chin. J. Catal. 2006, 27, 270.

    38. [38]

      [尤先锋, 陈 锋, 张金龙, 黄家桢, 张利中. 催化学报, 2006, 27, 270.]


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Yuan Zheng Houjin Li Zhanxiang Liu Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Xingwen Sun Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Standardization Suggestions for Organic Chemistry Reflux Experiments. University Chemistry, 2025, 40(5): 84-92. doi: 10.12461/PKU.DXHX202411045

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(2045)
  • Abstract views(2600)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return