Citation: TIAN Ying, WANG Jing-Ri, LIU Ming, SHI Kun, YANG Feng-Lin. Redox Stability of Polypyrrole in Aqueous Electrolyte Solutions by a Recurrent Potential Pulse Technique[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1116-1121. doi: 10.3866/PKU.WHXB20110515 shu

Redox Stability of Polypyrrole in Aqueous Electrolyte Solutions by a Recurrent Potential Pulse Technique

  • Received Date: 1 December 2010
    Available Online: 1 April 2011

    Fund Project: 国家自然科学基金(51078050)资助项目 (51078050)

  • The recurrent potential pulse (RPP) technique is an alternative and effective technique for redox stability measurement. We investigated the electrochemical redox stability of polypyrrole (ppy) films doped with sodium p-toluenesulfonate by RPP technique in this study. The reduction charge (Qred) and the ratio of reduction and oxidation charges (Qred/Qox) obtained from the switching potentials in aqueous solutions of H2SO4, Na2SO4, and NaOH were calculated to describe the reversibility of ppy at the applied potential windows. We found that the irreversible overoxidation strongly depended on the pH value of the supporting electrolytes and on the switching potentials. The onset of the overoxidation potential is 0.8 V in H2SO4 solution while it is only 0.5 V in Na2SO4 solution. In NaOH solution, overoxidation occurs at any potential indicating that the existence of OH- ions is directly responsible for overoxidation.

  • 加载中
    1. [1]

      (1) Kotz, R.; Carlen M. Electrochim Acta 2000, 45, 2483.

    2. [2]

      (2) Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791.

    3. [3]

      (3) Svirskis, D.; Wright, B. E.; Travas-Sejdic, J.; Rodgers, A.; Sanjay, G. Sensor. Actuat. B-Chem. 2010, 15, 97.

    4. [4]

      (4) Debiemme-Chouvy, C.; Tran, T. T. M. Electrochem. Commun. 2008, 10, 947.

    5. [5]

      (5) Palmisano, F.; Malitesta, C.; Centonze, D.; Zambonin, P. G. Anal. Chem. 1995, 67, 2207.

    6. [6]

      (6) Jaramillo, A.; Spurlock, L. D.; Young, V.; Brajter-Toth, A. Analyst 1999, 124, 1215.

    7. [7]

      (7) Otero, T. F.; Marquez, M.; Suarez, I. J Phys. Chem. B 2004, 108, 15429.

    8. [8]

      (8) Lim, V. W. L.; Kang, E. T.; Neoh, K. G. Macromol. Chem. Phys. 2001, 202, 2824.

    9. [9]

      (9) Forsyth, M.; Truong, V. T. Polymer 1995, 36, 725.

    10. [10]

      (10) Gao, M.; Zi, B.; Chen, B. J. Electroanal. Chem. 1994, 373, 141.

    11. [11]

      (11) Brie, M.; Turca, R.; Mihut, A. Mater. Chem. Phys. 1997, 49, 174.

    12. [12]

      (12) Fernández, I.; Trueba, M.; Núnez, C. A. R. J. Surf. Coat. Tech. 2005, 191, 134.

    13. [13]

      (13) Mostany, J.; Scharifker, B. R. Synth. Met. 1997, 87, 179.

    14. [14]

      (14) Fermín, D. J.; Teruel, H.; Scharifker, B. R. J. Electroanal. Chem. 1996, 401, 207.

    15. [15]

      (15) Uyar, T.; Toppare, L.; Hacaloglu, J. Synth. Met. 2001, 123, 335.

    16. [16]

      (16) Zou, X. Q.; Shen, Y.; Peng, Z. Q.; Zhang, L.; Bi, L. H.; Wang, Y. L. J. Electroanal. Chem. 2004, 566, 63.

    17. [17]

      (17) Arrigan, D. W. M.; Gray, D. S. Anal. Chim. Acta 1999, 402, 159.

    18. [18]

      (18) Visy, C.; Kriván, E.; Peintler, G. J. Electroanal. Chem. 1999, 462, 1.

    19. [19]

      (19) Rodriguez, I.; Scharifker, B. R.; Mostany, J. J. Electroanal. Chem. 2000, 491, 117.

    20. [20]

      (20) Ghosh, S.; Bowmaker, G. A.; Cooney, P. P.; Seakins, J. M. Synth. Met. 1998, 95, 63.

    21. [21]

      (21) Lewis, T. W.; Wallace, G. G.; Kim, C. Y.; Kim, D. Y. Synth. Met. 1997, 84, 403.

    22. [22]

      (22) Hyodo, K. Electrochim. Acta 1994, 39, 265.

    23. [23]

      (23) Pyo, M.; Reynolds, J. R.; Warren, L. F.; Marcy H. O. Synth. Met. 1994, 68, 71.

    24. [24]

      (24) Chu, S. Y.; Kilmartin, P. A.; Travas-Sejdic, J. Synth. Met. 2009, 159, 2286.

    25. [25]

      (25) Yoon, C. O.; Sung, H. K.; Kim, J. H.; Barsonkow, E.; Kim, J. H.; Lee, H. Synth. Met. 1999, 99, 201.

    26. [26]

      (26) Tian, Y.; Yang, F. L.; Yang, W. S. Synth. Met. 2006, 156, 1052.

    27. [27]

      (27) Li, Y.; Qian, R. Electrochim. Acta 2000, 45, 1727.


  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    6. [6]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    9. [9]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    16. [16]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    17. [17]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Leyu DINGYing HEZhihe WEIYang PENGZhao DENG . Conductive polypyrrole-confined Co-MOF-74 for high-performance lithium metal anodes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2491-2502. doi: 10.11862/CJIC.20250176

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(954)
  • Abstract views(2922)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return