Citation: LONG Jin-Xing, GUO Bin, LI Xue-Hui, WANG Fu-Rong, WANG Le-Fu. Catalytic Decomposition of Cellulose in Cooperative Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 995-999. doi: 10.3866/PKU.WHXB20110506 shu

Catalytic Decomposition of Cellulose in Cooperative Ionic Liquids

  • Received Date: 12 January 2011
    Available Online: 25 March 2011

    Fund Project: 国家自然科学基金(20876055, 21076085) (20876055, 21076085)

  • Cellulose, the abundant and cost-ineffective resource, is considered to be a perfect alternative for the alleviation of energy crisis and environmental pollution. However, most processes for the treatment of cellulose are ri r currently as it is insoluble in water and conventional organic solvents due to its strong intra and inter-molecular hydrogen bonds, where the phase problem hampers its utilization widely. Here, we built a novel and efficient cooperative ionic liquid pairs system for the low temperature catalytic conversion of cellulose, which was constructed through the combination of an acidic ionic liquid catalyst and a cellulose soluble ionic liquid solvent. The catalytic decomposition behavior of microcrystal cellulose in this vi rous catalytic system was studied intensively by thermogravimetry (TG). Results show that the decomposition temperature of cellulose decreases greatly in all cooperative ionic liquid pairs, cellulose dissolved in ionic liquid solvents can be in situ catalytic decomposed by acidic ionic liquids. Furthermore, the decomposition temperature is dependent on the acidic strength of the ionic liquid catalysts, stronger acidity results in a lower decomposition temperature of the cellulose. Moreover, we found that cellulose can be decomposed at lower temperature when the ionic liquid with higher solubility of cellulose is used.

  • 加载中
    1. [1]

      (1) Christensen, C. H.; Rass-Hansen, J.; Marsden, C. C.; Taarning, E.; Egeblad, K. Chemsuschem 2008, 1, 283.

    2. [2]

      (2) Himmel, M. E.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J. W.; Foust, T. D. Science 2007, 315, 804.

    3. [3]

      (3) Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; Lightfoot, H. D.; Manheimer, W.; Mankins, J. C.; Mauel, M. E.; Perkins, L. J.; Schlesinger, M. E.; Volk, T.; Wigley, T. M. L. Science 2002, 298, 981.

    4. [4]

      (4) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.

    5. [5]

      (5) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.

    6. [6]

      (6) Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.

    7. [7]

      (7) Zou, S. P.; Wu, Y. L.; Yang, M. D.; Li, C.; Tong, J. M. Energy Fuels 2009, 23, 3753.

    8. [8]

      (8) Balat, M. Energy Sources Part A. 2008, 30, 649.

    9. [9]

      (9) Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Angew. Chem. Int. Edit. 2005, 44, 3358.

    10. [10]

      (10) Lee, S. H.; Doherty, T. V.; Linhardt, R. J.; Dordick, J. S. Biotechnol. Bioeng. 2009, 102, 1368.

    11. [11]

      (11) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. J. Am. Chem. Soc. 2002, 124, 4974.

    12. [12]

      (12) Li, X. H.; Zhang, L.; Li, Q.; Geng, W. G.; Ye, Y. J.; Wang, L. F. Acta Phys. -Chim. Sin. 2004, 20, 1465.

    13. [13]

      [李雪辉, 张 磊, 李 琼, 耿卫国, 叶玉嘉, 王乐夫. 物理化学学报, 2004, 20, 1465.]

    14. [14]

      (13) Zhao, W. T.; Chen, H. X.; Zhou, J. J.; Liu, N. A. Acta Phys. -Chim. Sin. 2009, 25, 1756.

    15. [15]

      [赵伟涛, 陈海翔, 周建军, 刘乃安. 物理化学学报, 2009, 25, 1756.]

    16. [16]

      (14) Feng, J. L.; Zhang, J. G.; Zhang, T. L.; Cui, Y. Acta Phys. -Chim. Sin. 2010, 26, 2410.

    17. [17]

      [冯金玲, 张建国, 张同来, 崔 燕. 物理化学学报, 2010, 26, 2410.]

    18. [18]

      (15) Meng, G. G.; Kong, D. J.; Qi, X. L.; Xu, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 3017.

    19. [19]

      [蒙 根, 孔德金, 祁晓岚, 许中强. 物理化学学报, 2010, 26, 3017.]

    20. [20]

      (16) Lin, Y. C.; Cho, J.; Tompsett, G. A.; Westmoreland, P. R.; Huber, G. W. J. Phy. Chem. C 2009, 113, 20097.

    21. [21]

      (17) Zhang, H.; Zhao, F. Q.; Yi, J. H.; Zhang, X. H.; Hu, R. Z.; Xu, S. Y.; Ren, X. N. Acta Phys. -Chim. Sin. 2008, 24, 2263.

    22. [22]

      [张 衡, 赵凤起, 仪建华, 张晓宏, 胡荣祖, 徐司雨, 任晓宁. 物理化学学报, 2008, 24, 2263.]

    23. [23]

      (18) Chattopadhyay, J.; Kim, C.; Kim, R.; Pak, D. J. Ind. Eng. Chem. 2009, 15, 72.

    24. [24]

      (19) Yu, Z. S.; Ma, X. Q.; Liu, A. Energy Convers. Manage. 2009, 50, 561.

    25. [25]

      (20) Gui, J. Z.; Cong, X. H.; Liu, D.; Zhang, X. T.; Hu, Z. D.; Sun, Z. L. Catal. Commun. 2004, 5, 473.

    26. [26]

      (21) Wang, W.; Shao, L.; Cheng, W.; Yang, J.; He, M. Catal. Commun. 2008, 9, 337.

    27. [27]

      (22) Fei, Z. F.; Zhao, D. B.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. Chem. Eur. J. 2004, 10, 4886.

    28. [28]

      (23) Wasserscheid, P.; Sesing, M.; Korth, W. Green Chem. 2002, 4, 134.

    29. [29]

      (24) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168.

    30. [30]

      (25) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 5962.

    31. [31]

      (26) Adamovsky, O.; Kopp, R.; Hilscherova, K.; Babica, P.; Palikova, M.; Paskova, V.; Navratil, S.; Marsalek, B.; Blaha, L. Environ. Toxicol. Chem. 2007, 26, 2687.

    32. [32]

      (27) Handy, S. T.; Okello, M.; Dickenson, G. Org. Lett. 2003, 5, 2513.

    33. [33]

      (28) Yoshizawa-Fujita, M.; Johansson, K.; Newman, P.; MacFarlane, D. R.; Forsyth, M. Tetrahedron Lett. 2006, 47, 2755.

    34. [34]

      (29) Li, X. H.; Duan, H. L.; Pan, J. T.; Wang, L. F. Chin. J. Anal. Chem. 2006, 34(Suppl. 1) , 192.

    35. [35]

      [李雪辉, 段红丽, 潘锦添, 王乐夫. 分析化学, 2006, 34(Suppl. 1), 192.]

    36. [36]

      (30) Thornazeau, C.; Olivier-Bourbi u, H.; Magna, L.; Luts, S.; Gilbert, B. J. Am. Chem. Soc. 2003, 125, 5264.

    37. [37]

      (31) Kosan, B.; Michels, C.; Meister, F. Cellulose 2008, 15, 59.

    38. [38]

      (32) Pinkert, A.; Marsh, K. N.; Pang, S. S.; Staiger, M. P. Chem. Rev. 2009, 109, 6712.

    39. [39]

      (33) Ciolacu, D.; Popa, V. I. Cellul. Chem. Technol. 2006, 40, 445.

    40. [40]

      (34) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. J. Chem. Eng. Data 2004, 49, 954.

    41. [41]

      (35) Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S. Green Chem. 2009, 11, 417.


  • 加载中
    1. [1]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    5. [5]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    18. [18]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(1730)
  • Abstract views(2954)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return