Citation: ZHANG Jian-Po, JIN Li, ZHANG Hong-Xing. Structures and Spectroscopic Properties of [Ru(iph)(L)2]2+ (L=cpy, mpy, npy) Complexes Containing Tetradentate Ligands[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1089-1094. doi: 10.3866/PKU.WHXB20110505 shu

Structures and Spectroscopic Properties of [Ru(iph)(L)2]2+ (L=cpy, mpy, npy) Complexes Containing Tetradentate Ligands

  • Received Date: 3 January 2011
    Available Online: 25 March 2011

    Fund Project:

  • The geometries of ground and excited states of a series of ruthenium complexes [Ru(iph)(L)2]2+(L=cpy (1), mpy (2), npy (3); iph=2,9-di(1-methyl-2-imidazole)-1,10-phenanthroline, cpy=4-cyano pyridine, mpy=4-methyl pyridine, npy=4-N-methyl pyridine) were optimized by the Becke′s three-parameter functional and the Lee-Yang-Parr (B3LYP) functional and unrestricted B3LYP methods, respectively. Time- dependent density functional theory (TD-DFT) method at the B3LYP level together with the polarized continuum model (PCM) were used to obtain their absorption and phosphorescent emission spectra in acetone media based on their optimized ground and excited-state geometries. The results revealed that the optimized structural parameters agreed well with the corresponding experimental results. The highest occupied molecular orbitals were localized mainly on the d orbital of the metal and the π orbital of the iph ligand for 1 and 2, and the npy ligand for 3, while the lowest unoccupied molecular orbitals were mainly composed of π* orbital of the iph ligand. Therefore, the lowest-lying absorptions and emissions were assigned to the metal to ligand charge transfer (MLCT)/intra-ligand charge transfer (ILCT) transition for 1 and 2, and the ligand to ligand charge transfer (LLCT) transition for 3. The lowest-lying absorptions are at 509 nm (1), 527 nm (2), and 563 nm (3) and the phosphorescence emissions at 683 nm (1), 852 nm (2), and 757 nm (3). The calculation results show that the absorption and emission transition characteristics and the phosphorescence color can be changed by altering the π electron-donating ability of the L ligand.

  • 加载中
    1. [1]

      (1) Maubert, B.; McClenaghan, N. D.; Indelli, M. T.; Campagna, S. J. Phys. Chem. 2003, 107, 447.

    2. [2]

      (2) Bergmini, G.; Saudan, C.; Ceroni, P.; Maestri, M.; Balzani, V.; rka, M.; Lee, S. K.; Heyst, J.; Vögtle, F. J. Am. Chem. Soc. 2004, 126, 16466.

    3. [3]

      (3) Wong, C. Y.; Tong, G. S. M.; Che, C. M.; Zhu, N. Angew. Chem. Int. Edit. 2006, 45, 2694.

    4. [4]

      (4) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Zelewski, A. Coord. Chem. Rev. 1988, 84, 85.

    5. [5]

      (5) Klassen, D. M.; Crosby, G. A. J. Chem. Phys. 1965, 43, 1498.

    6. [6]

      (6) Lytle, F. E.; Hercules, D. M. J. Am. Chem. Soc. 1969, 91,23.

    7. [7]

      (7) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müeller, E.; Liska, P.; Vlachopoulos, N.; Gr?etzel, M. J. Am. Chem. Soc. 1993, 115, 6382.

    8. [8]

      (8) Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker.; Comte, R. P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gr?tzel, M. J. Am. Chem. Soc. 2001, 123, 1613.

    9. [9]

      (9) Zakeeruddin, S. M.; Nazeeruddin, M. K.; Humphry-Baker, R.; Péchy, P.; Quagliotto, P.; Barolo, C.; Visvardi, G.; Grätzel, M. Langmuir 2002, 18, 952.

    10. [10]

      (10) Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Taleru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.

    11. [11]

      (11) Wang, Z. S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Langmuir 2005, 21, 4272.

    12. [12]

      (12) Barolo, C.; Nazeeruddin, M. K.; Fantacci, S.; Censo, D. D.; Comte, P.; Liska, P.; Viscard, G.; Quagliotto, P.; Angelis, F. D.; Ito, S.; Grätzel, M. Inorg. Chem. 2006, 45, 4642.

    13. [13]

      (13) Renouard, T.; Fallahpour, R. A.; Nazeeruddin, M. K.; Humphry- Baker, R.; relsky, S. I.; Lever, A. B. P.; Grätzel, M. Inorg. Chem. 2002, 41, 367.

    14. [14]

      (14) Zong, R.; Thummel, R. P. J. Am. Chem. Soc. 2004, 126, 10800.

    15. [15]

      (15) Zhang, G.; Zong, R. F.; Tseng, H. W.; Thummel, R. P. Inorg. Chem. 2008, 47, 990.

    16. [16]

      (16) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.

    17. [17]

      (17) Kohn,W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

    18. [18]

      (18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    19. [19]

      (19) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    20. [20]

      (20) M?ller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

    21. [21]

      (21) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439.

    22. [22]

      (22) Cossi. M.; Scalmani. G.; Regar. N.; Barone. V. J. Chem. Phys. 2002, 117, 43.

    23. [23]

      (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02. Wallingford, CT: Gaussian, Inc., 2004.

    24. [24]

      (24) Zhou, X.; Zhang, H. X.; Pan, Q. J.; Li, M. X.; Wang, Y.; Che, C. M. Eur. J. Inorg. Chem. 2007, 15, 2181.

    25. [25]

      (25) Li, M. X.; Zhou, X.; Pan, Q. J.; Zhang, H. X.; Fu, H. G.; Sun, C. C. Chem. J. Chin. Univ. 2007, 28, 2377.

    26. [26]

      [李明霞, 周 欣, 潘清江, 张红星, 付宏刚, 孙家锺. 高等学校化学学报, 2007, 28, 2377.]

    27. [27]

      (26) Zhang. J. P.; Zhou. X.; Bai, F. Q.; Zhang, H. X.; Tang, A. Q. Theor. Chem. Account 2009, 122, 31.


  • 加载中
    1. [1]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    2. [2]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    4. [4]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    10. [10]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

Metrics
  • PDF Downloads(1340)
  • Abstract views(3522)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return