Citation: JIA Ming, LAI Yan-Qing, TIAN Zhong-Liang, LIU Fang-Yang, LI Jie, XIN Peng-Fei, LIU Ye-Xiang. Electrodeposition Behavior of Silicon from Na3AlF6-LiF Melts[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1108-1115. doi: 10.3866/PKU.WHXB20110504 shu

Electrodeposition Behavior of Silicon from Na3AlF6-LiF Melts

  • Received Date: 27 December 2010
    Available Online: 25 March 2011

    Fund Project: 高等学校博士学科点专项科研基金(200805331120) (200805331120) 湖南省研究生科研创新项目(CX2009B036) (CX2009B036) 中南大学研究生学位论文创新基金(2010bsxt02) (2010bsxt02)

  • A fundamental electrochemical study of Si in Na3AlF6-LiF melts and electrowinning and electrorefining in a small-scale laboratory cell was conducted. Cyclic voltammograms showed that the reduction of Si proceeds by two successive electron transfers and the presence of the Si(II) species in the melt was confirmed. Galvanostatic electrolysis showed that the deposited silicon crystal does not form any dense or massive layer at the graphite cathode as other metals do, but it is generally dispersed in the deposit around the cathode. The co-deposition of Al and Si is possible when the reduction potentials are more negative than -1.8 V versus Pt. The purity of the deposited Si was higher than 99.9%. This study demonstrates the feasibility of very pure Si production by electrochemical methods.

  • 加载中
    1. [1]

      (1) Chandra, P. K.; David, B.; Joyce, F. S. Sol. Energy Mater. Sol. Cells 2002, 74, 77.

    2. [2]

      (2) Richard, M. S. Prog. Photovolt: Res. Appl. 2006, 14, 443.

    3. [3]

      (3) Alvin, D. C. Sol. Energy Mater. Sol. Cells 2006, 90, 2170.

    4. [4]

      (4) Zhang, X. D.; Zhao, Y.; Gao, Y. T. Acta Phys. Sin. 2005, 54, 4874.

    5. [5]

      [张晓丹, 赵 颖, 高艳涛, 朱 峰. 物理学报, 2005, 54, 4874. ]

    6. [6]

      (5) Li, J. X.; Lai, H.; Zhang, Z. C.; Zhuang, B.; Huang, Z. G. Acta Phys. -Chim. Sin. 2007, 23, 1301.

    7. [7]

      [李加新, 赖 恒, 张志城, 庄 彬, 黄志高. 物理化学学报, 2007, 23, 1301.]

    8. [8]

      (6) Zhang, Z. X.; Wang, E. K. Electrochemistry Principle and Method; Science Press: Beijing, 2000; pp 55-58.

    9. [9]

      [张祖训, 汪尔康. 电化学原理和方法. 北京: 科学出版社, 2000; 55-58.]

    10. [10]

      (7) Duan, S. Z.; Qiao, Z. Y. Molten Salt Chemistry-Principle and Application; Metallurgical Industry Press: Beijing, 1990; pp 220-223.

    11. [11]

      [段淑贞, 乔芝郁. 熔盐化学原理和应用. 北京: 冶金工业出版社, 1990; 220-223.]

    12. [12]

      (8) Monnier, R.; Barakat, D. Dual cell refining of silicon and germanium. U. S. Patent 3219561, 1965.

    13. [13]

      (9) Elwell, D. J. Appl. Electrochem. 1988, 8,15.

    14. [14]

      (10) Olson, J. M.; Carleton, K. L. J. Electrochem. Soc. 1981, 128, 2698.

    15. [15]

      (11) Robert, C.; Mattei, D.; Dennis, E.; Robert, S. J. Electrochem. Soc. 1981, 128, 1712.

    16. [16]

      (12) Rao, G. M.; Elwell, D.; Feigelson, R. S. J. Electrochem. Soc. 1980, 127, 1940.

    17. [17]

      (13) Rao, G. M.; Elwell, D.; Feigelson, R. S. J. Electrochem. Soc. 1981, 128, 1708.

    18. [18]

      (14) Olson, J. M.; Carleton, K. L. Process for producing silicon. U. S. Patent 4448651, 1984.

    19. [19]

      (15) Boen, R.; Bouteillon, J. J. Appl. Electrochem. 1983, 13, 277.

    20. [20]

      (16) Cohen, U.; Huggins, R. A. J. Electrochem. Soc. 1976, 123, 381.

    21. [21]

      (17) Jia, M.; Tian, Z. L. ; Lai, Y. Q.; Li, J.; Yi, J. G.; Yan, J. F.; Liu, Y. X. Acta Phys. Sin. 2010, 59, 1938.

    22. [22]

      [贾 明, 田忠良, 赖延清, 李 劼, 伊继光, 闫剑锋, 刘业翔. 物理学报 2010, 59, 1938.]

    23. [23]

      (18) Lai, Y. Q.; Jia, M.; Tian, Z. L.; Li, J.; Yi, J. G.; Yan, J. F.; Liu, Y. X. Metall. Mater. Trans. A 2010, 41, 929.

    24. [24]

      (19) Chen, G. Z.; Fray, D. J.; Farthing, T. W. Nature 2000, 407, 361.

    25. [25]

      (20) Yasuda, K.; Nohira, T.; Ito, Y. J. Phy. Chem. Sol. 2005, 66, 443.

    26. [26]

      (21) Jin, X. B.; Wang, D. H.; Hu, X. H.; Chen, G. Z. Angew. Chem. Int. Edit. Engl. 2004, 116, 751.


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    6. [6]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    7. [7]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    8. [8]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    13. [13]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    14. [14]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    15. [15]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

Metrics
  • PDF Downloads(1263)
  • Abstract views(2711)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return