Citation: YANG Zhi-Qiang, MAO Dong-Sen, WU Ren-Chun, YU Jun, WANG Qian. Preparation of CuO-Ce0.6Zr0.4O2 by Microwave Heating Decomposition and Its Catalytic Property for CO Oxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1163-1168. doi: 10.3866/PKU.WHXB20110443 shu

Preparation of CuO-Ce0.6Zr0.4O2 by Microwave Heating Decomposition and Its Catalytic Property for CO Oxidation

  • Received Date: 22 December 2010
    Available Online: 22 March 2011

    Fund Project: 上海市教委重点学科建设项目(J51503)资助 (J51503)

  • A series of CuO-Ce0.6Zr0.4O2 catalysts with different contents (0-25%, w) of CuO were prepared by microwave heating decomposition and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption (BET), and temperature-programmed reduction with hydrogen (H2-TPR). The activities of the catalysts for CO oxidation were evaluated using a microreactor-gas chromatograph system. The results show that the CuO-Ce0.6Zr0.4O2 catalyst exhibits the best catalytic activity for CO oxidation at a CuO content of 15%. Three copper species are present in the catalysts, i.e., highly dispersed, small and large CuO particles. The highly dispersed and small CuO particles are responsible for the promotion of catalytic activity while the large CuO particles inhibit catalytic activity.

  • 加载中
    1. [1]

      (1) Liu, Y.; Meng, M.; Yao, J. S.; Zha, Y. Q. Acta Phys. -Chim. Sin. 2007, 23, 641.

    2. [2]

      [刘 咏, 孟 明, 姚金松, 査宇清. 物理化学学报, 2007, 23, 641.]

    3. [3]

      (2) Yu, J.; Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin. 2008, 24, 1751.

    4. [4]

      [俞 俊, 吴贵升, 毛东森, 卢冠忠. 物理化学学报, 2008, 24, 1751.]

    5. [5]

      (3) Zheng, X. C.; Wang, X. Y.; Yu, L. H.; Wang, S. R.; Wu, S. H. Prog. Chem. 2006, 18, 159.

    6. [6]

      [郑修成, 王向宇, 于丽华, 王淑荣, 吴世华. 化学进展, 2006, 18, 159.]

    7. [7]

      (4) Liang, F. X.; Zhu, H. Q.; Qin, Z. F.; Wang, G. F.; Wang, J. G. Prog. Chem. 2008, 20, 1453.

    8. [8]

      [梁飞雪, 朱华青, 秦张峰, 王国富, 王建国. 化学进展, 2008, 20, 1453.]

    9. [9]

      (5) Wang, S. P.; Zheng, X. C.; Wang, X. Y.; Wang, S. R.; Zhang, S. M.; Yu, L. H.; Huang, W. P.; Wu, S. H. Catal. Lett. 2005, 105, 163.

    10. [10]

      (6) Wang, S. P.; Wang, X. Y.; Huang, J.; Zhang, S. M.; Wang, S. R.; Wu, S. H. Catal. Commun. 2007, 8, 231.

    11. [11]

      (7) Wang, S. P.; Zhang, T. Y.; Su, Y.; Wang, S. R.; Zhang, S. M.; Zhu, B. L.; Wu, S. H. Catal. Lett. 2008, 121, 70.

    12. [12]

      (8) Jiang, X. Y.; Zhou, R. X.; Chen, Y.; Lou, L. P.; Zheng, X. M. J. Zhejiang Univ.: Science Edition 2001, 28, 653.

    13. [13]

      [蒋晓原, 周仁贤, 陈 煜, 楼莉萍, 郑小明. 浙江大学学报: 理学版, 2001, 28, 653.]

    14. [14]

      (9) Jiang, X. Y.; Chen, Y.; Zhou, R. X.; Zheng, X. M. J. Fuel Chem. Technol. 2001, 29(Suppl.), 122.

    15. [15]

      [蒋晓原, 陈 煜, 周仁贤, 郑小明. 燃料化学学报(增刊), 2001, 29, 122.]

    16. [16]

      (10) Wang, S. P.; Wang, X. Y.; Zheng, X. C.; Wang, S. R.; Zhang, S. M.; Huang, W. P.; Wu, S. H. React. Kinet. Catal. Lett. 2006, 89, 37.

    17. [17]

      (11) Luo, M. F.; Zheng, X. M. Acta Chem. Scand. 1998, 52, 1183.

    18. [18]

      (12) Yang, Z. Q.; Mao, D. S.; Zhu, H. L.; Lu, G. Z. Chin. J. Catal. 2009, 30, 997.

    19. [19]

      [杨志强, 毛东森, 朱慧琳, 卢冠忠. 催化学报, 2009, 30, 997.]

    20. [20]

      (13) Martinez-Arias, A.; Fernandez-Garcia, M.; Galvez, O.; Coronado, J. M.; Anderson, J. A.; Conesa, J. C.; Soria, J.; Munuera, G. J. Catal. 2000, 195, 207.

    21. [21]

      (14) Chen, H. L.; Zhu, H. Y.; Wu, Y.; Gao, F.; Dong, L.; Zhu, J. J. J. Mol. Catal. A 2006, 255, 254.

    22. [22]

      (15) Zhu, J.; Zhang, L. L.; Deng, Y.; Liu, B.; Dong, L. H.; Gao, F.; Sun, K. Q.; Dong, L.; Chen, Y. Appl. Catal. B 2010, 96, 449.

    23. [23]

      (16) Ayastuy, J. L.; Gurbani, A.; nzalez-Marcos, M. P.; Gutierrez- Ortiz, M. A. Appl. Catal. A 2010, 387, 119.

    24. [24]

      (17) Hong, Q. H.; Song, Y. P.; Jia, A. P.; Pu, Z. Y.; Luo, M. F. J. Mol. Catal. (China) 2008, 22, 429.

    25. [25]

      [洪庆红, 宋宇鹏, 贾爱平, 普志英, 罗孟飞. 分子催化, 2008, 22, 429.]

    26. [26]

      (18) Hong, Q. H.; Lin, H.; Song, Y. P.; Wu, C. S. J. Jinhua Coll. Prof. Technol. 2009, 9, 49.

    27. [27]

      [洪庆红, 林 鸿, 宋宇鹏, 吴昌胜. 金华职业技术学院学报, 2009, 9, 49.]

    28. [28]

      (19) Wang, E. G.; Chen, S. Y. J. Chin. Rare Earth Soc. 2001, 19, 17.

    29. [29]

      [王恩过, 陈诵英. 中国稀土学报, 2001, 19, 17.]

    30. [30]

      (20) Wang, E. G.; Chen, S. Y. J. Rare Earths 2002, 20, 533.

    31. [31]

      (21) Wang, J. P.; Wang, E. G.; Chen, S. Y. Coal Conv. 2000, 23, 88.

    32. [32]

      [王建平, 王恩过, 陈诵英. 煤炭转化, 2000, 23, 88.]

    33. [33]

      (22) Cao, J. L; Wang, Y.; Zhang, T. Y.; Wu, S. H.; Yuan, Z. Y. Appl. Catal. B 2008, 78, 120.

    34. [34]

      (23) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys.-Chim. Sin. 2010, 26, 3278.

    35. [35]

      [杨志强, 毛东森, 郭强胜, 顾 蕾. 物理化学学报, 2010, 26, 3278.]

    36. [36]

      (24) Yang, Z. Q.; Mao, D. S.; Zhu, H. L.; Lu, G. Z. Chin. J. Inorg. Chem. 2009, 25, 812.

    37. [37]

      [杨志强, 毛东森, 朱慧琳, 卢冠忠. 无机化学学报, 2009, 25, 812.]

    38. [38]

      (25) Mao, D. S.; Tao, L. H.; Wang, Q.; Guo, Y. L.; Lu, G. Z. Chin. J. Inorg. Chem. 2010, 26, 447.

    39. [39]

      [毛东森, 陶丽华, 王 倩, 郭杨龙, 卢冠忠. 无机化学学报, 2010, 26, 447.]

    40. [40]

      (26) Escribano, V. S.; Martínez, C. H.; López, E. F.; Amores, J. M. G.; Busca, G. Catal. Commun. 2009, 10, 861.

    41. [41]

      (27) Cai, C.; Xue, P. J. Ningxia Univ.: Natural Science Edition 2005, 26, 345.

    42. [42]

      [蔡 超, 薛 屏. 宁夏大学学报: 自然科学版, 2005, 26, 345.]

    43. [43]

      (28) Guo, X. K.; Jia, H. J.; Fang, Q. Y.; Li, W. Y.; Liu, W. M. Chin. J. Catal. 2009, 30, 124.

    44. [44]

      [郭锡坤, 贾海建, 范倩玉, 李文衍, 刘伟明. 催化学报, 2009, 30, 124.]

    45. [45]

      (29) Ma, L.; Luo, M. F.; Chen, S. Y. Appl. Catal. A 2003, 242, 151.


  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    4. [4]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    5. [5]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    6. [6]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

Metrics
  • PDF Downloads(1066)
  • Abstract views(3203)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return