Citation: ZHAO Gao-Feng, XIANG Bing, SHEN Xue-Feng, SUN Jian-Min, BAI Yan-Zhi, WANG Yuan-Xu. Structures and Stabilities of Small Zirconium Oxide Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1095-1102. doi: 10.3866/PKU.WHXB20110440 shu

Structures and Stabilities of Small Zirconium Oxide Clusters

  • Received Date: 21 December 2010
    Available Online: 18 March 2011

    Fund Project: 国家自然科学基金(10804027, 11011140321)资助项目 (10804027, 11011140321)

  • The geometric structures and stabilities of small ZrmOn (1≤m≤5, 1≤n≤2m) clusters were studied using density functional theory (DFT) calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation (GGA). The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small “core” zirconium clusters. In general, the O atoms prefer the bridge sites along the Zrm skeleton. The ground-state structures of the (ZrO2)3 and (ZrO2)5 clusters are consistent with coordination number rules and bonding regularity. The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed. We found that the ZrmO2m-1 clusters (not including Zr4O7) had the largest fragmentation energy among the clusters with the same number of zirconium atoms.

  • 加载中
    1. [1]

      (1) Cox, P. A. Transition Metal Oxides; Clarendon: Oxford, 1992.

    2. [2]

      (2) Rao, C. N.; Raveau, B. Transition Metal Oxides; Wiley: New York, 1998.

    3. [3]

      (3) Hayashi, C.; Uyeda, R.; Tasaki, A. Ultra-Fine Particles; Noyes: Westwood, 1997.

    4. [4]

      (4) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.

    5. [5]

      (5) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994.

    6. [6]

      (6) Gates, B. C. Chem. Rev. 1995, 95, 511.

    7. [7]

      (7) (a) Clair, T. P. St.; odman, D. W. Top. Catal. 2000, 13, 5.

    8. [8]

      (b) Wallace, W. T.; Min, B. K.; odman, D. W. ibid. 2005, 34, 17.

    9. [9]

      (8) Jia, X. T.; Yang, W.; Qin, M. H.; Li, J. P. J. Magn. Magn. Mater. 2009, 321, 2354

    10. [10]

      (9) Zirconia Engineering Ceramics. In Key Engineering Materials; Kisi, E. Ed.; Trans Tech. Publications, 1998; pp 153-154.

    11. [11]

      (10) Brune, H. Surf. Sci. Rep. 1998, 31, 121.

    12. [12]

      (11) Liu, S. D.; Bonig, L.; Metiu, H. Phys. Rev. B 1995, 52, 2907.

    13. [13]

      (12) Castleman , A. W., Jr.; Jena, P. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10552.

    14. [14]

      (13) Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2664.

    15. [15]

      (14) Martin, T. P.; Bergmann, T. J. Chem. Phys. 1989, 90, 6664.

    16. [16]

      (15) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Bordas, C.; Paulig, F.; Viallon, J.; Chevaleyre, J. Phys. Rev. Lett. 1998, 80, 2817.

    17. [17]

      (16) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Paulig, F.; Viallon, J.; Bordas, C.; Chevaleyre, J. J. Chem. Phys. 2000, 112, 6228.

    18. [18]

      (17) Ziemann, P. J.; Castleman, A. W., Jr. Phys. Rev. B 1991, 44, 6488.

    19. [19]

      (18) Ziemann, P. J.; Castleman, A. W., Jr. J. Chem. Phys. 1991, 94, 718.

    20. [20]

      (19) Saunders, W. A. Phys. Rev. B 1988, 37, 6583.

    21. [21]

      (20) Wilson, M. J. Phys. Chem. B 1997, 101, 4917.

    22. [22]

      (21) Liu, H. T.; Wang, S. Y.; Zhou, G.; Wu, J.; Duan, W. H. J. Chem. Phys. 2007, 126, 134705.

    23. [23]

      (22) Ding, X. L.; Xue, W.; Ma, Y. P.; Wang, Z. C.; He, S. G. J. Chem. Phys. 2009, 130, 014303.

    24. [24]

      (23) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.

    25. [25]

      (24) Kaufman, M.; Muenter, J.; Klemperer, W. J. Chem. Phys. 1967, 47, 3365.

    26. [26]

      (25) Linevsky, M. J. Proceedings of the First Meeting of the Interagency Chemical Rocket Propulsion Group on Thermochemistry Chemical Propulsion Information Agency, New York, 1963.

    27. [27]

      (26) Brugh, D. J.; Suenram, R. D. J. Chem. Phys. 1999, 111, 3526.

    28. [28]

      (27) Foltin, M.; Stueber, G. J.; Bernstein, E. R. J. Chem. Phys. 2001, 114, 8971.

    29. [29]

      (28) Chen, S. G.; Yu, M. Y.; Hu, B. G.; Wang, X.; Liu, Y. C.; Yu, S. Q.; Zhang, W. W.; Yin, Y. S. J. Chin. Ceram. Soc. 2007, 35, 46.

    30. [30]

      (29) Takashi, A.; Wataru, H.; Shige, O. J. Chem. Phys. 2002, 117, 24.

    31. [31]

      (30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.

    32. [32]

      (31) Delley, B. J. Chem. Phys. 1990, 92, 508; 2000, 113, 7756; DMol3 is available as part of Material Studio.

    33. [33]

      (32) Wang, C. C.; Zhao, R. N.; Hang, J. G. J. Chem. Phys. 2006, 124, 194301.

    34. [34]

      (33) Huber, K. P.; Herzberg, G. Constant of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.

    35. [35]

      (34) Weltner, W., Jr.; Mcleod, D., Jr. J. Phys. Chem. 1965, 69, 488.

    36. [36]

      (35) Mcintyre, N. S.; Thompson, K. R.; Weltner, W., Jr. J. Phys. Chem. 1971, 75, 3243.

    37. [37]

      (36) Siegbahn, P. E. M. J. Phys. Chem. 1993, 97, 9096.

    38. [38]

      (37) Lu, W. C.; Wang, C. Z.; Nguyen, V.; Schmidt, M. W.; rdon, M. S.; Ho, K. M. J. Phys. Chem. A 2003, 107, 6936.

    39. [39]

      (38) Chu, T. S.; Zhang, R. Q.; Cheng, J. F. J. Phys. Chem. B 2001, 105, 1705.

    40. [40]

      (39) Jones, N. O.; Reddy, B. V.; Rasouli, F. Phys. Rev. B 2005, 72, 165411.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    9. [9]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(1290)
  • Abstract views(2955)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return