Citation: SONG Ji-Zhong, HE Ying, ZHU Di, CHEN Jie, PEI Chang-Long, WANG Jun-An. Polymer/ZnO Micro-Nano Array Composites for Light-Emitting Layer of Flexible Optoelectronic Devices[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1207-1213. doi: 10.3866/PKU.WHXB20110435 shu

Polymer/ZnO Micro-Nano Array Composites for Light-Emitting Layer of Flexible Optoelectronic Devices

  • Received Date: 1 November 2010
    Available Online: 17 March 2011

    Fund Project: 上海市科委纳米技术专项基金(1052nm07400) (1052nm07400) 上海市重点学科建设项目(S30107) (S30107)上海大学研究生创新基金(SHUCX102259)资助 (SHUCX102259)

  • We prepared PAM/ZnO micro-nano arrays on indium tin oxide (ITO) conductive films based on poly(ethylene terephthalate) (PET) substrates (PET/ITO) by a low cost and low temperature chemical solution approach. The morphology and crystal structure of the nanorod arrays were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the ordered arrays of the ZnO and PAM/ZnO arrays grew vertically on the substrates and revealed that the nanorods grew along the [0001] direction of the ZnO crystallites. SEM images showed that most of the ZnO arrays had an average diameter of 150 nm and their typical length was about 3 μm. The optical properties of the ZnO and PAM/ZnO micro-nano arrays were characterized by photoluminescence at room temperature. The growth mechanism of the PAM/ZnO arrays and their possible application in flexible optoelectronic devices are discussed. Defect peaks of the blue peak at 457 nm and the green peak at 530 nm were observed in the photoluminescence (PL) spectrum of the ZnO micro-nano arrays in the absence of PAM. The blue and green emissions are attributed to electron transitions from the extended state Zni to the valance band and from the conduction band to antisite oxygen (OZn), respectively. The PAM/ZnO arrays only had a UV peak at 400 nm, and this was caused by electron transitions from the interstitial Zn (Zni) to the valance band. Flexible PAM/ZnO devices with od diode characteristics are suitable for flexible optoelectronic applications.

  • 加载中
    1. [1]

      (1) He, Y.; Wang, J. A.; Chen, X. B.; Zhang, W. F.; Zeng, X. Y.; Gu, Q. W. J. Nanopart. Res. 2010, 12, 169.

    2. [2]

      (2) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.

    3. [3]

      (3) Saito, N.; Haneda, H.; Sekiguchi, T.; Ohashi, N.; Sakaguchi, I.; Koumoto, K. Adv. Mater. 2002, 14, 418.

    4. [4]

      (4) Guan, J.; Wang, X. Y.; Tian, Z. P.; Zhang, J. Y.; Yu, T.; Yu, Z. T.; Zou, Z. G. Chin. J. Inorg. Chem. 2009, 25, 2036.

    5. [5]

      (5) Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S. E.; Hagfeldt, A. Sol. Energy Mater. Sol. Cells 2002, 73, 51.

    6. [6]

      (6) Kim, S. W.; Fujita, S.; Fujita, S. Appl. Phys. Lett. 2002, 81, 5036.

    7. [7]

      (7) Luo, Z. Q.; Zhang, X. B.; Cheng, J. P.; Tao, X. Y.; Li, Y.; Liu, F.; Tang, X. M.; Wang, Y. W. Acta. Chim. Sin. 2005, 63, 1656.

    8. [8]

      (8) Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3350.

    9. [9]

      (9) He, Y.; Sang, W. B.; Wang, J.; Wu, R. F.; Min, J. H. J. Nanopart. Res. 2005, 7, 307.

    10. [10]

      (10) He, Y.; Sang, W. B.; Wang, J. A.; Wu, R. F.; Min, J. H. Mater. Chem. Phys. 2005, 94, 29.

    11. [11]

      (11) Greene, L. E.; Law, M.; ldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Angew. Chem. Int. Edit. 2003, 42, 3031.

    12. [12]

      (12) Guo, M.; Diao, P.; Cai, S. J. Solid State Chem. 2005, 178, 1864.

    13. [13]

      (13) Zhang, H. Z.; Sun, X. C.; Wang, R. M.; Yu, D. P. J. Cryst. Growth 2004, 269, 464.

    14. [14]

      (14) Wang, L.; Zhang, X.; Zhao, S.; Zhou, G.; Zhou, Y.; Qi, J. Appl. Phys. Lett. 2005, 86, 024108.

    15. [15]

      (15) Wang, Z. L. J. Phys: Condens. Matter 2004, 16, R829.

    16. [16]

      (16) Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T. J.; Chang, R. P. H. Chem. Mater. 2005, 17, 1001.

    17. [17]

      (17) Wang, M.; Ye, C. H.; Zhang, Y.; Wang, H. X.; Zeng, X. Y.; Zhang, L. D. J. Mater. Sci.-Mater. El. 2008, 19, 211.

    18. [18]

      (18) Yi, S. H.; Choi, S. K.; Jang, J. M.; Kim, J. A.; Jung, W. G. J. Colloid Interface Sci. 2007, 313, 705.

    19. [19]

      (19) Lin, B.; Fu, Z.; Jia, Y. Appl. Phys. Lett. 2001, 79, 943.

    20. [20]

      (20) Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Adv. Funct. Mater. 2010, 20, 561.

    21. [21]

      (21) Xu, P. S.; Sun, Y. M.; Shi, C. S.; Xu, F. Q.; Pan, H. B. Sci. China Ser. A 2001, 44, 1174.


  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    5. [5]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    10. [10]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    15. [15]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(1452)
  • Abstract views(2361)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return