Citation: MI Juan, WANG Yu-Ting, GAO Peng-Cheng, LI Wen-Cui. Effects of Thermal Treatment on the Electrochemical Behavior of Manganese Dioxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 893-899. doi: 10.3866/PKU.WHXB20110431 shu

Effects of Thermal Treatment on the Electrochemical Behavior of Manganese Dioxide

  • Received Date: 17 November 2010
    Available Online: 14 March 2011

    Fund Project: 教育部新世纪优秀人才计划(NCET-08-0075)资助项目 (NCET-08-0075)

  • Manganese dioxide (MnO2) was synthesized using a fluid phase method with potassium permanganate and manganous acetate as precursors. The obtained MnO2 was treated thermally at different temperatures. The structural transformation of MnO2, its electrochemical behavior as an electrode material for use in a supercapacitor were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physical adsorption, thermogravimetry (TG), cyclic voltammetry, and galvanostastic charge-discharge. The results indicate that the synthesized MnO2 can be assigned to its α phase and that it possesses a mesoporous feature with a high surface area of up to 253 m2·g-1. After a low temperature thermal treatment (<350 °C), the manganese oxide retained its α-MnO2 crystal structure and its specific surface area was found to be approximately 170 m2·g-1. The specific capacitance of the single electrode increased from 267 F·g-1 for untreated MnO2 to 286 F·g-1 for the sample treated at 250 °C. However, high temperature thermal treatment (>450 °C) results in a transformation of the manganese oxide structure to α-Mn2O3 and then to α-Mn3O4. Additionally, the surface area reduced to ca 30 m2·g-1 and this lead to a dramatic decrease in the specific capacitance of manganese oxide. The electrochemical cycling stability of manganese oxide improved noticeably after low temperature thermal treatment and the electrode retained a od rate performance at a scan rate of 50 mV·s-1.

  • 加载中
    1. [1]

      (1) Miller, J. R.; Simon, P. Science 2008, 321, 651.

    2. [2]

      (2) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic Plenum Publishers: New York, 1999.

    3. [3]

      (3) Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142(8): 2699.

    4. [4]

      (4) Brousse, T.; Taberna, P. L.; Crosnier, O.; Dugas, Romain.; Guillemet, P.; Scudeller, Y.; Zhou, Y. K.; Favier, F.; Bélanger, D.; Simon, P. J.Power Sources. 2007, 173, 633.

    5. [5]

      (5) Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosiner, O.; Bélanger, D. Electrochem. Soc. 2006, 153, A2171.

    6. [6]

      (6) Toupin, M.; Brousse, T.; Belanger, D. Chem. Mater. 2004, 16, 3184.

    7. [7]

      (7) Jones, D. J.; Wortham, E.; Rozière, J.; Favier, F.; Pascal, J. L.; Monconduit, L. Phys. Chem. Solids. 2004, 65, 235.

    8. [8]

      (8) Chin, S. F.; Pang, S. C.; Anderson, M. A. Electrochem. Soc. 2000, 147, A379.

    9. [9]

      (9) Pang, S. C.; Anderson, M. A.; Chapman, T. W. Electrochem. Soc. 2002, 149, A379.

    10. [10]

      (10) Shinomiya, T.; Gupta, V.; Miura, N. Electrochim Acta 2006, 51, 4412.

    11. [11]

      (11) Qu, D.; Shi, H. J.Power. Source. 1998, 74, 99.

    12. [12]

      (12) Qu, D. J. Power Sources. 2002, 109, 403.

    13. [13]

      (13) Xia, X. Battery Bimonthly 2006, 36, 195.

    14. [14]

      [夏 熙. 电 池, 2006, 36, 195.]

    15. [15]

      (14) Wagner, C. D.; Riggs, W. M.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy-A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation and Physical Electronics Division Publishers: Eden Prairie, Minn, 1979.

    16. [16]

      (15) Tian, Y.; Yan, J.W.; Liu, X. X.; Xue, R.;Yi, B. L. Acta Phys.-Chim. Sin. 2010, 26(8), 2151.

    17. [17]

      [田 颖, 阎景旺, 刘小雪, 薛 荣, 衣宝廉. 物理化学学学报, 2010, 26(8), 2151.]

    18. [18]

      (16) Kozawa, A. The manuel of Manganese Dioxide; Sichuan Science and Technology Press: Chen Du, 1994: 79-80; translated by Xia, Y.

    19. [19]

      [Kozawa, A. 二氧化锰手册. 夏 熙, 译. 成都: 四川科技出版社, 1994: 79-80.]

    20. [20]

      (17) Liu , K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.

    21. [21]

      (18) Subramanian, V.; Zhu, H.; Wei, B. J. Power Sources 2006, 159, 361.


  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    17. [17]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    18. [18]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    19. [19]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(1669)
  • Abstract views(2514)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return