Citation: FAN Min, LI Guo-Bao, WANG Dong-Wei, JIN Tou-Nan, LIAO Fu-Hui, LIN Jian-Hua. Synthesis, Structure and Characterization of Pb1-xTbxTi1-xMnxO3 (0≤x≤0.10) Solid Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 990-994. doi: 10.3866/PKU.WHXB20110428 shu

Synthesis, Structure and Characterization of Pb1-xTbxTi1-xMnxO3 (0≤x≤0.10) Solid Solutions

  • Received Date: 27 December 2010
    Available Online: 11 March 2011

    Fund Project: 国家自然科学基金(20771008) (20771008) 北京市教委重点基金(KM201010005019) (KM201010005019)科技部重大研究计划(2010CB833103)资助项目 (2010CB833103)

  • Solid solutions of Pb1-xTbxTi1-xMnxO3 (0≤x≤0.10) were synthesized by a traditional solid state reaction and characterized by powder X-ray diffraction. The solutions crystallize in the P4mm space group at room temperature. Differential scanning calorimetry (DSC) measurements were performed to obtain phase transition temperatures (Tc) for the samples, and these were found to decrease with an increase in the amount of doped Tb and Mn. The temperature dependent dielectric constant shows a peak close to the Tc, indicating that the corresponding phase transition is a ferroelectric phase transition. Magnetic measurements indicate that a paramagnetic to antiferromagnetic phase transition occurs at 25 and 29 K for Pb1-xTbxTi1-xMnxO3 with x=0.08 and x=0.10, respectively.

  • 加载中
    1. [1]

      (1) Jaffe, B.; Cook, W. R.; Jaffe, H. Piezoelectric Ceramics; New York: Academic, 1971.

    2. [2]

      (2) Uchino, K. Ferroelectric Devices; New York: Marcel Dekker, 2000.

    3. [3]

      (3) Scott, J. F.; Araujo, C. A. Science 1989, 246, 1400.

    4. [4]

      (4) Qi, T. T.; Grinberg, I.; Rappe, A. M. Phys. Rev. B 2010, 82, 134113.

    5. [5]

      (5) Datta, K.; Walker, D.; Thomas, P. A. Phys. Rev. B 2010, 82, 144108.

    6. [6]

      (6) Li, F.; Zhang, S. J.; Xu, Z.; Wei, X. Y.; Luo, J.; Shrouty, T. R. J. Am. Ceram. Soc. 2010, 93, 2731.

    7. [7]

      (7) Wu, J. G.; Zhu, J. L.; Xiao, D. Q.; Zhu, J. G.; Tan, J. Z.; Zhang, Q. L. Thin Solid Films 2008, 517, 1005.

    8. [8]

      (8) Hu, P. H.; Chen, J.; Deng, J. X.; Xing, X. R. J. Am. Chem. Soc. 2010, 132, 1925.

    9. [9]

      (9) Chen, J. G.; Qi, Y. F.; Shi, G. Y.; Yu, S. W.; Cheng, J. R. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 1820.

    10. [10]

      (10) Huang, W.; Jiang, S. W.; Li, Y. R.; Zhu, J.; Zhang, Y.; Wei, X. H.; Zeng, H. Z. Thin Solid Films 2006, 500, 138.

    11. [11]

      (11) Sun, C.; Wang, J. G.; Kang, H. J.; Chen, J.; Kim, M. J.; Xing, X. R. Dalton Trans. 2010, 39, 9952.

    12. [12]

      (12) Kaneshiro, J.; Uesu, Y. Jpn. J. Appl. Phys. 2010, 49, 09me02.

    13. [13]

      (13) Pontes, D. S. L.; Lon , E.; Pontes, F. M.; Pereira-Da-Silva, M. A.; da Silva, J. H. D.; Chiquito, A. J.; Pizani, P. S. J. Sol-Gel Sci. Technol. 2010, 55, 151.

    14. [14]

      (14) Birks, E.; Dunce, M.; Antonova, M.; Sternberg, A. Physica Status Solidi C-Current Topics in Solid State Physics 2009, 6, 2737.

    15. [15]

      (15) Amorin, H.; Jimenez, R.; Ricote, J.; Hungria, T.; Castro, A.; Alguero, M. Journal of Physics D-Applied Physics 2010, 43, 285401.

    16. [16]

      (16) Mastelaro, V. R.; Mascarenhas, Y. P.; Neves, P. P.; Mir, M.; Doriguetto, A. C.; Michalowicz, A.; Moscovici, J.; Lente, M. H.; Eiras, J. A. J. Appl. Phys. 2010, 107, 114103.

    17. [17]

      (17) Li, H. M.; Zhou, Y. Y.; Tian ,Y. F.; Li, X. D.; Guo, H. L.; Xiao, D. Q.; Zhu, J. G. Appl. Surf. Sci. 2010, 257, 1407.

    18. [18]

      (18) Rai, R.; Kholkin, A. L.; Sharma, S. J. Alloy. Compd. 2010, 506, 815

    19. [19]

      (19) Ranjan, R.; Raju, K. A. Phys. Rev. B 2010, 82, 054119.

    20. [20]

      (20) Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R. Science 2003, 299, 1719.

    21. [21]

      (21) Kimura, T.; to, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura Y. Nature 2003, 426, 55.

    22. [22]

      (22) Larson. A. C.; von Dreele, R. B. Report LAUR 86-748 Los Alamos National Laboratory, 1985.

    23. [23]

      (23) Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65.

    24. [24]

      (24) Vegard, L. Z. Physics 1921, 5, 17.

    25. [25]

      (25) Vegard, L. Z. Kristallogr. 1928, 67, 239.

    26. [26]

      (26) Jaffc, B.; Roth, R. S.; Marzullo, S. J. Res. Nat. Bur. Stand. 1955, 55, 239.

    27. [27]

      (27) Yu, H. C.; Ren, W.; Ye, Z. G. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2010, 57, 2177.

    28. [28]

      (28) Dwight, K.; Menyuk, N. Phys. Rev. 1960, 119, 1470.


  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    3. [3]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    4. [4]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    9. [9]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    10. [10]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    11. [11]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    12. [12]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    17. [17]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    18. [18]

      Kun WangTianxue GongYaohuang HuangBoyang HanHanxiao YangPavlo O. DralWeiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539

    19. [19]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    20. [20]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(999)
  • Abstract views(2654)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return