Citation: KONG De-Shuai, WANG Jian-Ming, PI Ou-Yang, SHAO Hai-Bo, ZHANG Jian-Qing. Electrochemical Fabrication and Pseudocapacitive Performance of a Porous Nanostructured Nickel-Based Complex Film Electrode[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 764-768. doi: 10.3866/PKU.WHXB20110427 shu

Electrochemical Fabrication and Pseudocapacitive Performance of a Porous Nanostructured Nickel-Based Complex Film Electrode

  • Received Date: 20 December 2010
    Available Online: 11 March 2011

    Fund Project: 国家自然科学基金(50972128)资助项目 (50972128)

  • A porous nickel film was prepared by the selective anodic dissolution of copper from an electrodeposited Ni-Cu alloy film. A porous nanostructured nickel-based complex film electrode was further fabricated by oxidizing the obtained porous nickel film using cyclic voltammetry in 1 mol·L-1 KOH solution. The physical properties and pseudocapacitive performance of the as-prepared film electrodes were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. The results of SEM, XRD, and XPS indicate that the obtained complex film electrode consists of Ni, Ni(OH)2, and NiOOH, and it has a porous nanostructure. The electrochemical experiments revealed that the as-prepared porous nanostructured nickel-based complex film electrode had a specific capacitance of 578 F·g-1 at a current density of 20 A·g-1 at the initial cycle and it gave a specific capacitance of 544 F·g-1 after 1000 cycles with a capacitance retention of 94%. The nanoporous structure enhances the accessibility of the KOH electrolyte and promotes reactive species transport within the electrode. The nanoporous Ni substrate may improve the electronic conductivity of the thin Ni(OH)2 film at its surfaces. The nanosized Ni(OH)2 grains can shorten the proton diffusion pathways in the bulk of the solid nickel hydroxide. These factors are responsible for the superior pseudocapacitive performance of the porous nanostructured nickel-based complex film electrode.

  • 加载中
    1. [1]

      (1) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.

    2. [2]

      (2) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.

    3. [3]

      (3) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.

    4. [4]

      (4) Miller, J. R.; Simon, P. Science 2008, 321, 651.

    5. [5]

      (5) Wu, M. S.; Huang, Y. A.; Yang, C. H. J. Electrochem. Soc. 2008, 155, A798.

    6. [6]

      (6) Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699.

    7. [7]

      (7) Sugimoto, W.; Iwata, H.; Yasunaga, Y.; Murakami, Y.; Takasu, Y. Angew. Chem. Int. Edit. 2003, 42, 4092.

    8. [8]

      (8) Wu, M. S.; Huang, C. Y.; Lin, K. H. J. Power Sources 2009, 186, 557.

    9. [9]

      (9) Zhao, D. D.; Bao, S. J.; Zhou, W. J.; Li, H. L. Electrochem. Comm. 2007, 9, 869.

    10. [10]

      (10) Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1194.

    11. [11]

      (11) Zeng, W. W.; Huang, K. L.; Yang, Y. P.; Liu, S. Q.; Liu, R. S. Acta Phys. -Chim. Sin. 2008, 24, 263.

    12. [12]

      [曾雯雯, 黄可龙, 杨幼平, 刘素琴, 刘人生. 物理化学学报, 2008, 24, 263.]

    13. [13]

      (12) Hu, J.; Yuan, A. B.; Wang, Y. Q.; Wang, X. L. Acta Phys. -Chim. Sin. 2009, 25, 987.

    14. [14]

      [胡 洁, 袁安保, 王玉芹, 王秀玲. 物理化学学报, 2009, 25, 987.]

    15. [15]

      (13) Jeevanandam, P.; Koltypin, Y.; Gedanken, A. Nano Lett. 2001, 1, 263.

    16. [16]

      (14) Srinivasan, V.; Weidner, J. W. J. Electrochem. Soc. 2000, 147, 880.

    17. [17]

      (15) He, J. J.; Lindström, H.; Hagfeldt, A.; Lindquist, S. E. J. Phys. Chem. B 1999, 103, 8940.

    18. [18]

      (16) Liu, K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.

    19. [19]

      (17) Wang, Y. G.; Xia, Y. Y. Electrochim. Acta 2006, 51, 3223.

    20. [20]

      (18) Lee, S. H.; Tracy, C. E.; Pitts, J. R. Electrochem. Solid State Lett. 2004, 7, A299.

    21. [21]

      (19) Zhao, D. D.; Zhou, W. J.; Li, H. L. Chem. Mat. 2007, 19, 3882.

    22. [22]

      (20) Wu, M. S.; Wang, M. J. Electrochem. Solid State Lett. 2010, 13, A1.

    23. [23]

      (21) Chang, J. K.; Hsu, S. H.; Sun, I. W.; Tsai, W. T. J. Phys. Chem. C 2008, 112, 1371.

    24. [24]

      (22) Sun, L.; Chien, C. L.; Searson, P. C. Chem. Mat. 2004, 16, 3125.

    25. [25]

      (23) Medway, S. L.; Lucas, C. A.; Kowal, A.; Nichols, R. J.; Johnson, D. J. Electroanal. Chem. 2006, 587, 172.

    26. [26]

      (24) Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E. J. Phys. Chem. B 2002, 106, 1869.

    27. [27]

      (25) Hoflund, G. B.; Epling, W. S. Chem. Mat. 1998, 10, 50.

    28. [28]

      (26) Hosogai, S.; Tsutsumi, H. J. Power Sources 2009, 194, 1213.

    29. [29]

      (27) Wu, M. S.; Huang, Y. A.; Jow, J. J.; Yang, W. D.; Hsieh, C. Y.; Tsai, H. M. Int. J. Hydrog. Energy 2008, 33, 2921.


  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    5. [5]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    6. [6]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    7. [7]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    12. [12]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    13. [13]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    18. [18]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(1931)
  • Abstract views(3621)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return