Citation: FAN Xin-Zhuang, LU Yong-Hong, KONG Xiang-Feng, XU Hai-Bo, WANG Jia. Pseudo-Capacitive and Electrocatalytic Properties of Electrochemically Modified Graphite Electrode in Different Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 887-892. doi: 10.3866/PKU.WHXB20110426 shu

Pseudo-Capacitive and Electrocatalytic Properties of Electrochemically Modified Graphite Electrode in Different Solutions

  • Received Date: 19 November 2010
    Available Online: 11 March 2011

    Fund Project: 山东省博士基金(BS2010NJ018) (BS2010NJ018)中国海洋大学专项基金(201022006)资助项目 (201022006)

  • A graphite electrode (GE) was electrochemically modified by recurrent galvanic pulses. The pseudo-capacitive behavior in acidic and neutral solutions and the electrocatalytic property in HCl and HNO3 solutions of the modified graphite electrode (MGE) were evaluated by cyclic voltammetry (CV). We found that the MGE exhibited a considerable pseudo-capacitance (the specific capacitance was high up to 1.730 F·cm-2) in H2SO4 solution and excellent pseudo-capacitive behavior was obtained in HCl solution as well except for a narrow potential window. This was due to the excellent electrocatalytic activity of the MGE toward the chlorine evolution reaction (the onset potential of chlorine evolution was negatively shifted 238 mV). However, the MGE showed no pseudo-capacitive behavior in HNO3 solution but did show electrocatalytic activity toward the reduction of nitric acid. Compared with the pseudo-capacitive behavior in acidic solutions, the potential window of the MGE in neutral solution was substantially broadened and its energy density improved greatly eventually even though the corresponding peak current density decreased.

  • 加载中
    1. [1]

      (1) Richard, C. A.; Richard, D. B. AICHE J. 2004, 50, 2000.

    2. [2]

      (2) Wu, H. H. Electrochemical engineering fundamentals; Beijing: Chemical Industry Press, 2008; pp 1-15.

    3. [3]

      [吴辉煌. 电化学工程基础. 北京: 化学工业出版社, 2008; pp 1-15.]

    4. [4]

      (3) Tang, D. Mater. Sci. Eng. 1989, 7, 42.

    5. [5]

      [唐 电. 材料科学与工程, 1989, 7, 42.]

    6. [6]

      (4) Frackowiak, E.; Béguin, F. Carbon 2001, 39, 937.

    7. [7]

      (5) Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Carbon 2005, 43, 1293.

    8. [8]

      (6) McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.; Swider, K. E.; Rolison, D. R. J. Phys. Chem. B 1999, 103, 4825.

    9. [9]

      (7) Jude, O. I.; Kirill, L. J. Power Sources 2006, 117, 267.

    10. [10]

      (8) Xu, H. B.; Fan X. Z.; Lu, Y. H.; Zhong, L.; Kong, X. F.; Wang J. Carbon 2010, 48, 3300.

    11. [11]

      (9) Couper, A. M.; Pletcher, D.; Walsh, F. C. Chem. Rev. 1990, 90, 837.

    12. [12]

      (10) Zhi, J. F.; Guan B. Sci. Bull. 2006, 51, 497.

    13. [13]

      [只金芳, 关 波. 科学通报, 2006, 51, 497.]

    14. [14]

      (11) Rajeshwar, K.; Ibanez, J. G.; Swain, G. M. J. Appl. Electrochem. 1994, 24, 1077.

    15. [15]

      (12) Kapoor, A.; Viraraghavan, T. J. Environ. Eng. 1997, 123, 371.

    16. [16]

      (13) Wang, X. M.; Cong, E. D.; Luo, W. L.; Wang, J. L. Sci. China Ser. B 2008, 38, 824.

    17. [17]

      [王旭明, 从二丁, 罗文龙, 王建龙. 中国科学 B辑: 化学, 2008, 38, 824.]

    18. [18]

      (14) Prusse, U.; Vorlop, K. D. J. Mol. Catal. A: Chem. 2001, 173, 313.

    19. [19]

      (15) Fan, X. Z.; Xu, H. B.; Lu, Y. H.; Kong, X. F.; Wang, J. New Carbon Mater. 2011, (Accepted).

    20. [20]

      [范新庄, 徐海波, 芦永红, 孔祥峰, 王 佳. 新型炭材料, 2011, (已接收).]

    21. [21]

      (16) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Zhong, L.; Kong, X. F.; Wang, J. Electrochim. Acta 2010, (Under review).

    22. [22]

      (17) Joos, P.; Serrien, G. J. Colloid Interface Sci. 1991, 145, 291.

    23. [23]

      (18) Kim, J. H.; Nam, K. W.; Ma, S. B.; Kim, K. B. Carbon 2006, 44, 1963.

    24. [24]

      (19) Andrew, B.; Marshall, M. Electrochim. Acta 2010, 55, 7538.

    25. [25]

      (20) Tatsuki, H.; Ali, I. N.; Takeo, Y.; Don, N. F.; Satoshi, Y.; Osamu, T.; Hiroaki, H.; Motoo, Y.; Sumio, I.; Kenji, H. Adv. Funct. Mater. 2010, 20, 422.

    26. [26]

      (21) Ma, L. Study on the Chemical and Electrochemical Reactions of Oxidizer Containing Chlorine. M.S. Dissertation, Tongji University: Shanghai, 2007.

    27. [27]

      [马 雷, 含氯氧化物的化学及电化学转化

    28. [28]

      [D]. 上海: 同济大学, 2007.]

    29. [29]

      (22) Gu, Q. C.; Lou, S. C.; Dai, Q. P.; Huang, B. R.; Li, Q. J. Chemical Table. Nanjing: Jiangsu Science & Technology Publishing House, 1979; pp 559-560.

    30. [30]

      [顾庆超, 楼书聪, 戴庆平, 黄炳荣, 李乔钧. 化学用表. 南京: 江苏科技出版社, 1979; pp 559-560.]

    31. [31]

      (23) Xie, Q. F.; Chen, Y. M.; Huang, M. L.; Lin, B. Z. Acta Chim. Sin. 2008, 66, 2107.

    32. [32]

      [解庆范, 陈延民, 黄妙龄, 林碧洲. 化学学报, 2008, 66, 2107.]

    33. [33]

      (24) Sun, D. Z., Liu, H. T.; Huang, H. P.; Zhu, G. Y. Chin. J. Anal. Chem. 2007, 35, 139.

    34. [34]

      [孙旦子, 刘洪涛, 黄海平, 朱果毅. 分析化学, 2007, 35, 139.]


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(1349)
  • Abstract views(2664)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return