Citation: WU Xiao-Lin, SUN Rong, ZHU Peng-Li, DU Ru-Xu. Near Infrared Spectrum Analysis of Organic/Inorganic Composite Microcapsule Phase Change Materials[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1039-1044. doi: 10.3866/PKU.WHXB20110424 shu

Near Infrared Spectrum Analysis of Organic/Inorganic Composite Microcapsule Phase Change Materials

  • Received Date: 27 October 2010
    Available Online: 11 March 2011

    Fund Project: 国家自然科学基金(20971089)资助项目 (20971089)

  • Using Fourier transform near infrared (FT-NIR) spectroscopy, the characteristics and phase change mechanism of the phase change process for PMMA-SiO2@PCM microcapsules were explored. We investigated changes in the microstructure of the microcapsules as well. The results show that the melting of paraffin molecules in the microcapsules is a process wherein the -CH2 symmetric stretching vibration gradually increases and the asymmetric stretching vibration changes randomly. During the paraffin phase change process, the change in absorbance intensity is only half that of the shell materials. Additionally, NIR spectroscopy was used to analyze the core-shell structure and to monitor the phase change process for the microcapsules. The application of NIR spectroscopy to study the phase change process for microcapsule phase change materials has scientific significance and is of value to study the phase change mechanism for the determination of the most efficient phase change materials.

  • 加载中
    1. [1]

      (1) Lu, W. Z. Modern Near Infrared Spectroscopy Analytical Technology, 2nd ed.; China Petrochemical Press: Beijing, 2007; pp 16-345.

    2. [2]

      [陆婉珍. 现代近红外光谱分析技术(第二版). 北京: 中国石化出版社, 2007: 16-345.]

    3. [3]

      (2) Wurster, D. E.; Werawatganone, P. J. Pharm. Sci. 2010, 99, 1440.

    4. [4]

      (3) Green, B. K.; Lowell, S. Oil-Containing Microscopic Capsules and Method of Making Them. USA Pat. Appl. 2800457, 1957.

    5. [5]

      (4) Rau, G. C. Science 1950, 111, 229.

    6. [6]

      (5) David, S. E.; Daniels, E. S.; El-Aasser, M. S. ACS Symposium Series 1992, 492, 1.

    7. [7]

      (6) Su, J. F.; Wang, L. X.; Ren, L. Colloid Polym. Sci. 2005, 284, 224.

    8. [8]

      (7) Wang, J. P.; Zhao, X. P; Guo, H. L. Langmuir 2004, 20, 10845.

    9. [9]

      (8) Frere, Y.; Danicher, L.; Gramain, P. Eur. Polym. J. 1998, 34, 193.

    10. [10]

      (9) Kim, E. Y.; Do, K. H. J. Appl. Polym. Sci. 2005, 96, 1596.

    11. [11]

      (10) Hawlader, M. N. A.; Uddin, M. S.; Khin, M. M. Appl. Energy 2003, 74, 195.

    12. [12]

      (11) Loxley, A.; Vincent, B. J. Colloid Interf. Sci. 1998, 208, 49.

    13. [13]

      (12) Jorge, L. C.; Jeffrey, L. W.; Randolph, S. D. Langmuir 2008, 24, 2064.

    14. [14]

      (13) Brinker, C. J. Advances in chemistry 1994, 234, 361.

    15. [15]

      (14) Ogawa, K.; Chemburu, S.; Lopez, G. P.; Whitten, D. G.; Schanze, K. S. Langmuir 2007, 23, 4541.

    16. [16]

      (15) Joncheray, T. J.; Audebert, P.; Schwartz, E.; Jovanovic, A. V.; Ishaq, O.; Chávez, J. L.; Pansu, R.; Duran, R. S. Langmuir 2006, 22, 8684.

    17. [17]

      (16) Zhang, H. Z.; Wang, X. D.; Wu, D. Z. J. Colloid Interface Sci. 2010, 343, 246.

    18. [18]

      (17) Wu, X. L.; Wang, Y. H.; Sun, R.; Lai, M. B.; Du, R. X.; Zhang, Z. J. Journal of Physics-Conference Series 2009, 188, 012046.

    19. [19]

      (18) Mercedes, P.; Matias, J.; Mariana, B. M.; Susana, C. G.; Sara, A. B. Chem. Mater. 2008, 20, 3015.

    20. [20]

      (19) Chang, C. C.; Tsai, Y. L.; Chiu, J. J.; Chen, H. Journal of Applied Polymer Science 2009, 112, 1850.

    21. [21]

      (20) Chang, K. C.; Chen, Y. K.; Chen, H. Journal of Applied Polymer Science 2008, 107, 1530.

    22. [22]

      (21) Zou, H.; Wu, S. S.; Shen, J. Chem. Rev. 2008, 108, 3893.

    23. [23]

      (22) Reikichi, I.; Toshihiko, M. Anal. Chem. 2007, 79, 3455.

    24. [24]

      (23) Matsushita, A.; Ren, Y. Z.; Matsukawa, K.; Inoue, H.; Minami, Y.; Noda, I.; Ozaki, Y. Vibrational Spectroscopy 2000, 24, 171.

    25. [25]

      (24) Chung, H.; Ku, M. S. Applied Spectroscopy 2003, 57, 545.

    26. [26]

      (25) Lu, W. Z.; Yuan, H. F.; Xu, G. T.; Qiang, D. M. Modern Near Infrared Spectroscopy Analytical Technology, 1st ed.; China Petrochemical Press: Beijing, 2000; pp 20-26.

    27. [27]

      [陆婉珍, 袁洪福, 徐广通, 强冬梅. 现代近红外光谱分析技术(第一版). 北京: 中国石化出版社, 2000: 20-26.]


  • 加载中
    1. [1]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    6. [6]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    16. [16]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(1448)
  • Abstract views(2644)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return