Citation: SU Shu, HUANG Rong, ZHAO Liu-Bin, WU De-Yin, TIAN Zhong-Qun. Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 781-792. doi: 10.3866/PKU.WHXB20110418 shu

Vibrational Spectroscopy Criteria to Determine α-Pyridyl Adsorbed on Transition Metal Surfaces

  • Received Date: 29 October 2010
    Available Online: 8 March 2011

    Fund Project: 国家自然科学基金(20973143, 91027009) (20973143, 91027009)国家重点基础研究发展规划(973) (2007CB815303, 2009CB930703) (973) (2007CB815303, 2009CB930703)厦门大学(2010121020) (2010121020)国家科学人才培养基金(J1030415)资助项目 (J1030415)

  • Density functional theory calculations at the B3LYP/6-311+G**/LANL2DZ(metal) level were used to predict the infrared (IR) and Raman spectra for pyridine and α-pyridyl upon interaction with platinum (Pt), palladium (Pd), rhodium (Rh), and nickel (Ni) clusters. After carefully comparing the simulated IR and Raman spectra with the corresponding experimental spectra from literature, the characteristic frequencies for the metal surface adsorbed pyridine and α-pyridyl were determined. Our results show that on these metal surfaces α-pyridyl has a far lower Raman activity compared with pyridine, but their characteristic frequencies have comparable IR intensities. This is the reason why different adsorption configurations are proposed for the IR and the surface-enhanced Raman spectra (SERS). Our results indicate that IR spectroscopy is an effective tool to detect α-pyridyl adsorbed on metal surface.

  • 加载中
    1. [1]

      (1) Li, Q. X.; Xue, X. K.; Xu, Q. J.; Cai, W. B. Applied Spectroscopy 2007, 61, 1328.

    2. [2]

      (2) Bridge, M. E.; Connolly, M.; Lloyd, D. R.; Somers, J.; Jakob, P.; Menzel, D. Spectrochim. Acta A 1987, 43, 1473.

    3. [3]

      (3) Haq, S.; King, D. A. J. Phys. Chem. 1996, 100, 16957.

    4. [4]

      (4) Huo, S. J.; Xue, X. K.; Yan, Y. G.; Li, Q. X.; Ma, M.; Cai, W. B.; Xu, Q. J.; Osawa, M. J. Phys. Chem. B 2006, 110, 4162.

    5. [5]

      (5) Andersson, M. P.; Uvdal, P. J. Phys. Chem. B 2001, 105, 9458.

    6. [6]

      (6) Morrow, B. A.; Cody, I. A.; Moran, L. E.; Palepu, R. J. Catal. 1976, 44, 467.

    7. [7]

      (7) DiNardo, N. J.; Avouris, P.; Demuth, J. E. J. Chem. Phys. 1984, 81, 2169.

    8. [8]

      (8) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1986, 90, 5900.

    9. [9]

      (9) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1987, 91, 389.

    10. [10]

      (10) Mate, C. M.; Somorjai, G. A.; Tom, H. W. K.; Zhu, X. D.; Shen, Y. R. J. Chem. Phys. 1988, 88, 441.

    11. [11]

      (11) Gao, J. S.; Tian, Z. Q. Spectrochim. Acta A 1997, 53, 1595.

    12. [12]

      (12) Cai, W. B.; She, C. X.; Ren, B.; Yao, J. L.; Tian, Z. W.; Tian, Z. Q. J. Chem. Soc. Faraday Trans. 1998, 94, 3127.

    13. [13]

      (13) Huang, Q. J.; Li, X. Q.; Yao, J. L.; Ren, B.; Cai, W. B.; Gao, J. S.; Mao, B. W.; Tian, Z. Q. Surf. Sci. 1999, 427-428, 162.

    14. [14]

      (14) Liu, Z.; Yang, Z. L.; Cui, L.; Ren, B.; Tian, Z. Q. J. Phys. Chem. C 2007, 111, 1770.

    15. [15]

      (15) Inoue, Y.; Kishi, K.; Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 1983, 31, 109.

    16. [16]

      (16) Wexler, R. M.; Tsai, M. C.; Friend, C. M.; Muetterties, E. L. J. Am. Chem. Soc. 1982, 104, 2034.

    17. [17]

      (17) Schoofs, G. R.; Benziger, J. B. J. Phys. Chem. 1988, 92, 741.

    18. [18]

      (18) Johnson, A. L.; Muetterties, E. L.; Stohr, J.; Sette, F. J. Phys. Chem. 1985, 89, 4071.

    19. [19]

      (19) Zuo, C.; Ja dzinski, P. W. J. Phys. Chem. B 2005, 109, 1788.

    20. [20]

      (20) Jones, T. E.; Zuo, C.; Ja dzinski, P. W.; Eberhart, M. E. J. Phys. Chem. C 2007, 111, 5493.

    21. [21]

      (21) Andrade, G. F. S.; Temperini, M. L. A. J. Raman Spectrosc. 2009, 40, 1989.

    22. [22]

      (22) Wu, D. Y.; Ren, B.; Xu, X.; Liu, G. K.; Yang, Z. L.; Tian, Z. Q. J. Chem. Phys. 2003, 119, 1701.

    23. [23]

      (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    24. [24]

      (24) Wu, D. Y.; Ren, B.; Jiang, Y. X.; Xu, X.; Tian, Z. Q. J. Phys. Chem. A 2002, 106, 9042.

    25. [25]

      (25) Wu, D. Y.; Hayashi, M.; Shiu, Y. J.; Liang, K. K.; Chang, C. H.; Yeh, Y. L.; Lin, S. H. J. Phys. Chem. A 2003, 107, 9658.

    26. [26]

      (26) Wu, D. Y.; Cao, Z. J.; Ren, B.; Xu, X.; Tian, Z. Q. Chinese Journal of Light Scattering 2002, 13, 199.

    27. [27]

      [吴德印, 曹志霁, 任 斌, 徐 昕, 田中群. 光散射学报, 2002, 13, 199.]

    28. [28]

      (27) Wu, D. Y.; Hayashi, M.; Lin, S. H.; Tian, Z. Q. Spectrochim. Acta A 2004, 60, 137.

    29. [29]

      (28) Wu, D. Y.; Liu, X. M.; Xu, Y. C.; Duan, S.; Ren, B.; Tian, Z. Q. Chinese Journal of Light Scattering 2006, 18, 323.

    30. [30]

      [吴德印, 刘秀敏, 徐咏春, 段 赛, 任 斌, 田中群. 光散射学报, 2006, 18, 323.]

    31. [31]

      (29) Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195.

    32. [32]

      (30) Wilson, E. B. Phys. Rev. 1934, 45, 706.

    33. [33]

      (31) Kline, J. C. H.; Turkevich, J. J. Chem. Phys. 1944, 12, 300.

    34. [34]

      (32) Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679.

    35. [35]

      (33) Lauhon, L. J.; Ho, W. J. Phys. Chem. A 2000, 104, 2463.


  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    3. [3]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    8. [8]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    17. [17]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    18. [18]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    19. [19]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    20. [20]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

Metrics
  • PDF Downloads(1242)
  • Abstract views(2878)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return