Citation: TANG Yan, ZHONG Ben-He, GUO Xiao-Dong, LIU Heng, ZHONG Yan-Jun, NIE Xiang, TANG Hong. Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 869-874. doi: 10.3866/PKU.WHXB20110416 shu

Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method

  • Received Date: 3 January 2011
    Available Online: 7 March 2011

    Fund Project: 国家科技支撑计划(2007BAQ01055)资助项目 (2007BAQ01055)

  • A Li3V2(PO4)3/C composite cathode material was obtained by a sol-gel method using deionized water and organic solvents as mixed solvents. Ethanol, ethylene glycol, and 1,2-propylene glycol were used as the organic solvents and polyacrylic acid (PAA) was used as the chelating agent and carbon source. The structure, morphology, and electrochemical performance of the synthesized materials were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, and cyclic voltammetry. XRD analysis showed that all the materials were well crystallized and that the addition of organic solvents did not affect the crystal structure of Li3V2(PO4)3. The results of galvanostatic cycling showed that the electrochemical performance of the products was improved by the addition of organic solvents. The material synthesized using 1,2-propylene glycol had the best electrochemical performance. It exhibited an initial discharge capacity of 132.89 mAh·g-1 at 0.1C (1C=150 mA·g-1) in the voltage range of 3.0-4.5 V. The initial discharge capacity was as high as 125.42 mAh·g-1 upon discharging at 10C, and it had a capacity retention of 95.79% after 700 cycles. These results indicate a od rate and cycling performance in the voltage range of 3.0-4.5 V; while in the voltage range of 3.0-4.8 V, it exhibits a bad rate performance. SEM images indicated that the sample prepared using the mixed solvents had a flake-like and needle-like shape, which facilitates the interface ion-transfer process and thus improves the overall electrochemical properties.

  • 加载中
    1. [1]

      (1) Guo, X. D.; Zhong, B. H.; Liu, H.; Wu, D. Q.; Tang, Y.; Tang, H. J. Electrochem. Soc. 2009, 156, A787.

    2. [2]

      (2) Tang, Y.; Guo, X. D.; Zhong, B. H.; Liu, H. Inorganic Chemicals Industry 2010, 42, 12.

    3. [3]

      [唐 艳, 郭孝东, 钟本和, 刘 恒. 无机盐工业, 2010, 42, 12.]

    4. [4]

      (3) Wu, D. Q.; Zhong, B. H.; Xu, R.; Guo, X. D.; Liu, H.; Song, Y.; Tang, Y. New Chemical Materials 2010, 38, 37.

    5. [5]

      [吴德桥, 钟本和, 徐 瑞, 郭孝东, 刘 恒, 宋 杨, 唐 艳. 化工新型材料, 2010, 38, 37.]

    6. [6]

      (4) Li, Y. Z.; Zhou, Z.; Gao, X. P.; Yan, J. Electrochimica Acta 2007, 52, 4922.

    7. [7]

      (5) Jiang, T.; Wei, Y. J.; Pan, W. C.; Li, Z.; Ming, X.; Chen, G.; Wang, C. Z. J. Alloy. Compd. 2009, 488, L26.

    8. [8]

      (6) Li, L. J.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wu, L.; Hao, Y.; Zheng, J. C. J. Alloy. Compd. 2010, 497, 176.

    9. [9]

      (7) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liu, H.; Wu, D. Q.; Yang, H. L. J. Chem. Eng. Chin. Univ. 2009, 23, 701.

    10. [10]

      [郭孝东, 钟本和, 唐 艳, 刘 恒, 吴德桥, 杨海兰. 高校化学工程学报, 2009, 23, 701.]

    11. [11]

      (8) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liao, W. H.; Wu, D. Q. Chemical Research and Application 2008, 20, 625.

    12. [12]

      [郭孝东, 钟本和, 唐 艳, 廖文华, 吴德桥. 化学研究与应用, 2008, 20, 625.]

    13. [13]

      (9) Hou, C. P.; Yue, M. Acta Phys. -Chim. Sin. 2007, 23, 1954.

    14. [14]

      [侯春平, 岳 敏. 物理化学学报, 2007, 23, 1954.]

    15. [15]

      (10) Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Wu, L.; Li, L. J.; Guo, H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916.

    16. [16]

      [郑俊超, 李新海, 王志兴, 李金辉, 伍 凌, 李灵均, 郭华军. 物理化学学报, 2009, 25, 1916.]

    17. [17]

      (11) Chen, Q. Q.; Wang, J. M.; Tang, Z.; He, W. C.; Shao, H. B.; Zhang, J. Q. Electrochimica Acta 2007, 52, 5251.

    18. [18]

      (12) Tan, L.; Luo, Z. M.; Liu, H. W.; Yu, Y. J. Alloy. Compd. 2010, 502, 407.

    19. [19]

      (13) Jang, I. C.; Lim, H. H.; Lee, S. B.; Karthikeyan, K.; Aravindan, V.; Kang, K. S.; Yoon, W. S.; Cho, W. I.; Lee, Y. S. J. Alloy. Compd. 2010, 497, 321.

    20. [20]

      (14) Wang, L.; Zhang, L. C.; Lieberwirth, L.; Xu, H. W.; Chen, C. H. Electrochem. Commun. 2010, 12, 52.

    21. [21]

      (15) Wang, J. W.; Zhang, X. F.; Liu, J.; Yang, G. L.; Ge, Y. C.; Yu, Z. J.; Wang, R. S.; Pan, X. M. Electrochimica Acta 2010, 55, 6879.

    22. [22]

      (16) Wang, L. J.; Zhou, X. C.; Guo, Y. L. J. Power Sources 2010, 195, 2844.

    23. [23]

      (17) Fu, P.; Zhao, Y. M.; Dong, Y. Z.; Hou, X. M. J. Phys. Chem. Solid 2010, 71, 394.

    24. [24]

      (18) Zhou, X. C.; Liu, Y. M.; Guo, Y. L. Electrochimica Acta 2009, 54, 2253.

    25. [25]

      (19) Jiang, T.; Pan, W. C.; Wang, J.; Bie, X. F.; Du, F.; Wei, Y. J. Electrochimica Acta 2010, 55, 3864.

    26. [26]

      (20) Huang, J. S.; Yang, L.; Liu, K. Y.; Tang, Y. F. J. Power Sources 2010, 195, 5013.

    27. [27]

      (21) Dai, C. S.; Wang, F. P.; Liu, J. T.; Wang, D. L; Hu, X. G. Chin. J. Inorg. Chem. 2008, 24, 381.

    28. [28]

      [戴长松, 王福平, 刘静涛, 王殿龙, 胡信国. 无机化学学报, 2008, 24, 381.]

    29. [29]

      (22) Yang, G.; Liu, H. D.; Ji, H. M.; Chen, Z. Z.; Jiang, X. F. J. Power Sources 2010, 195, 5374.

    30. [30]

      (23) Yang, G.; Liu, H. D.; Ji, H. M.; Chen, Z. Z.; Jiang, X. F. Electrochimica Acta 2010, 55, 2951.

    31. [31]

      (24) Rui, X. H.; Li, C.; Chen, C. H. Electrochimica Acta 2009, 54, 3374.

    32. [32]

      (25) Saidi, M. Y.; Barker, J.; Huang, H.; Swoyer, J. L.; Adamson, G. J. Power Sources 2003, 119-121, 266.

    33. [33]

      (26) Fu, P.; Zhao, Y.; Dong, Y.; An, X.; Shen, G. Electrochimica Acta 2006, 52, 1003.


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    7. [7]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(1367)
  • Abstract views(3424)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return