Citation: ZHUO Zu-Liang, ZHANG Fu-Jun, XU Xiao-Wei, WANG Jian, LU Li-Fang, XU Zheng. Photovoltaic Performance Improvement of P3HT:PCBM Polymer Solar Cells by Annealing Treatment[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 875-880. doi: 10.3866/PKU.WHXB20110414 shu

Photovoltaic Performance Improvement of P3HT:PCBM Polymer Solar Cells by Annealing Treatment

  • Received Date: 13 December 2010
    Available Online: 3 March 2011

    Fund Project: 国家自然科学基金(10804006, 60576016) (10804006, 60576016) 北京交通大学红果园人才计划, 国家重点基础研究发展规划(973) (2010CB327704) (973) (2010CB327704) 国家杰出青年基金(60825407),北京市自然科学基金(1102028) (60825407),北京市自然科学基金(1102028) 高等学校学科创新引智计划(B08002) (B08002)高等学校基本科研业务基金(2011JBM123)资助项目 (2011JBM123)

  • Several polymer solar cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/Al (indium tin oxide/ poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester/aluminum cathode) were fabricated by spin coating. The influence of annealing temperature on the performance of the polymer solar cells was studied using absorption spectra, photoluminescence spectra, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM). These devices were treated at 120 °C for 10 min in an ambient atmosphere and the best power conversion efficiency (PCE) of 2.00% was obtained at an open circuit voltage (Voc) of 0.64 V, a short circuit current density (Jsc) of 10.25 mA·cm-2, and a fill factor (FF) of 38.1%. The intensities of the absorption peaks at 560 and 610 nm increased because of the increased absorption ππ* transition of P3HT after annealing treatment. XRD spectra showed that the intensity of the diffraction peaks at (100) for P3HT increased 1.8 times by comparison with that of the cells that did not under annealing treatment. The P3HT:PCBM phase separation increased markedly after annealing treatment, which is valuable for exciton dissociation. FTIR results also showed that the polymer materials did not deteriorate during the annealing treatment process.

  • 加载中
    1. [1]

      (1) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 570, 1789.

    2. [2]

      (2) Lin, C.; Lin, E. Y.; Tsai, F. Y. Adv. Funct. Mater. 2010, 20, 834.

    3. [3]

      (3) Troshin, P. A.; Hoppe, H.; Renz, J.; Egginger, M.; Mayorova, J. Y.; ryochev, A. E.; Peregudov, A. S.; Lyubovskaya, R. N.; bsch, G.; Sariciftci, N. S.; Razumov, V. F. Adv. Funct. Mater. 2009, 19, 779.

    4. [4]

      (4) You, H. L.; Zhang, C. F. Chin. Phys. B 2009, 18, 2096.

    5. [5]

      (5) Yu, H. Z.; Peng, J. B.; Zhou, X. M. Acta Phys. Sin. 2008, 57, 3898.

    6. [6]

      [於黄忠, 彭俊彪, 周晓明. 物理学报, 2008, 57, 3898.]

    7. [7]

      (6) He, Y. J.; Chen, H. Y.; Hou, J. H.; Li, Y. F. J Am. Chem. Soc. 2010, 132, 1377.

    8. [8]

      (7) Li, Y. W.; Liu, P. Y.; Hou, L. T.; Wu, B. Acta Phys. Sin. 2010, 59, 1248.

    9. [9]

      [李艳武, 刘彭义, 侯林涛, 吴 冰. 物理学报, 2010, 59, 1248.]

    10. [10]

      (8) Zhang, F. J.; Sun, F. Y.; Shi, Y. Z.; Zhuo, Z. L.; Lu, L. F.; Zhao, D. W.; Xu, Z.; Wang, Y. S. Energy Fuels 2010, 24, 3739.

    11. [11]

      (9) Zhang, F. J.; Zhao, D. W.; Zhuo, Z. L.; Wang, H.; Xu, Z.; Wang, Y. S. Sol. Energy Mater. Sol. Cells 2010, 94, 2416.

    12. [12]

      (10) Tong, X.; Lassiter, B. E.; Forrest, S. R. Org. Electron. 2010, 11, 705.

    13. [13]

      (11) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 5835.

    14. [14]

      (12) Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photon. 2009, 3, 649.

    15. [15]

      (13) Sun, X. W.; Zhao, D. W.; Ke, L.; Kyaw, A. K. K.; Lo, G. Q.; Kwong, D. L. Appl. Phys. Lett. 2010, 97, 053303.

    16. [16]

      (14) Zhang, F. J.; Xu, Z.; Zhao, D. W.; Zhao, S. L.; Jiang, W. W.; Yuan, G. C.; Song, D.; Wang, Y. S.; Xu, X. R. J. Phys. D: Appl. Phys. 2007, 40, 4485.

    17. [17]

      (15) Cheng, C. H.; Wang, J.; Du, G. T.; Shi, S. H.; Du, Z. J.; Fan, Z. Q.; Bian, J. M.; Wang, M. S. Appl. Phys. Lett. 2010, 97, 083305.

    18. [18]

      (16) Brabec, C. J.; wrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S. J.; Williams, S. P. Adv. Mater. 2010, 22, 3839.

    19. [19]

      (17) Hu, Z. J.; Gesquiere, A. J. Chem. Phys. Lett. 2009, 476, 51.

    20. [20]

      (18) Sundarrajan, S.; Murugan, R.; Nair, A. S.; Ramakrishna, S. Mater Lett. 2010, 64, 2369.

    21. [21]

      (19) Bisquert, J.; Garcia-Belmonte, G.; Munar, A.; Sessolo, M.; Soriano, A.; Bolink, H. J. Chem. Phys. Lett. 2008, 465, 57.

    22. [22]

      (20) Bartholomew, G. P.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 677.

    23. [23]

      (21) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.

    24. [24]

      (22) Liao, H. H.; Chen, L. M.; Xu, Z.; Li, G.; Yang, Y. Appl. Phys. Lett. 2008, 92, 173303.

    25. [25]

      (23) Guo, T. F.; Wen, T. C.; Pakhomov, G. L.; Chin, X. G.; Liou, S. H.; Yeh, P. H.; Yang, C. H. Thin Solid Films 2008, 516, 3138.

    26. [26]

      (24) Feng, Z. H.; Hou, Y. B.; Shi, Q. M.; Liu, X. J.; Teng, F. Chin. Phys. B 2010, 19, 098601.

    27. [27]

      (25) Zhang, F.; Vollmer, A.; Zhang, J.; Xu, Z.; Rabe, J. P.; Koch, N. Org. Electron. 2007, 8, 606.

    28. [28]

      (26) Bao, Z. N.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108.

    29. [29]

      (27) Nunzi, J. M. Labo POMA, Angers, France, 2002, pp 197-224.

    30. [30]

      (28) Jain, A.; Kapoor, A. Sol. Energy Mater. Sol. Cells 2005, 86, 197.


  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(2983)
  • Abstract views(4193)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return