Citation: LIU Zhen-Hai, SHANG Ya-Zhuo, HUANG Yong-Min, PENG Chang-Jun, LIU Hong-Lai. Disassembly of Polyelectrolyte/Surfactants Complex Induced by Macroions[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1135-1142. doi: 10.3866/PKU.WHXB20110406 shu

Disassembly of Polyelectrolyte/Surfactants Complex Induced by Macroions

  • Received Date: 11 November 2010
    Available Online: 1 March 2011

    Fund Project: 国家自然科学基金(20706013, 20736002) (20706013, 20736002) 长江学者创新团队(IRT0721) (IRT0721)

  • The effects of charge number, diameter, surface charge density as well as concentration of macroions on the structure of a polyelectrolyte/surfactants complex were investigated using coarse- grained molecular dynamics simulation. We found that the macroions that had the same charge as the polyelectrolyte had no obvious effect on the structure of the polyelectrolyte/surfactants complex. However, the macroions with opposite charge to the polyelectrolyte can induce the release of surfactant from the polyelectrolyte and even lead to the complete disassembly of the polyelectrolyte/surfactants complex and the formation of a macroion/polyelectrolyte complex. The induction effect increases with an increase in charge number. For microions with the same charge number, smaller microions were found to cause desorption of the surfactant more easily. However the opposite effect was found for the diameter at a fixed charge density. The concentration of macroions also affects the structure of the complex greatly and the surfactants that are released from the polyelectrolyte increase with the macroion concentration and finally a macroion/polyelectrolyte complex with reversed charges is formed.

  • 加载中
    1. [1]

      (1) ddard, E. D.; Ananthapadmanabhan, K. P. Interactions of Surfactants with Polymers and Proteins; CRC Press: Boca Raton, FL, 1993.

    2. [2]

      (2) Zhou, S. Q.; Chu B. Adv. Mater. 2000, 12, 545.

    3. [3]

      (3) Kwak, J. C. T. Polymer-Surfactant Systems. Marcel Dekker: New York, 1999.

    4. [4]

      (4) Chu, D. Y.; Thomas, J. K. Polym. Prepr. 1986, 27, 329.

    5. [5]

      (5) Morishima, Y.; Mizusaki M.; Yoshida, K.; Dubin. P. L. Colloids and Surfaces A, Physicochem. Eng. Aspects 1999, 147, 149.

    6. [6]

      (6) Kosmella, S.; K?tz, J.; Shirahama, K.; Liu, J. J. Phys. Chem. B 1998, 102, 6459.

    7. [7]

      (7) Wang, C.; Tam, K. C. J. Phys. Chem. B 2004, 108, 8976.

    8. [8]

      (8) Dubin, P. L.; Oeri, R. J. Colloid Interface Sci. 1983, 95, 453.

    9. [9]

      (9) Almgren, M.; Hansson, P.; Mukhtar, E.; Stam, J. V. Langmuir 1992, 8, 2405.

    10. [10]

      (10) Yan, P.; Jin, C.; Wang, C.; Ye, J.; Xiao, J. J. Colloid Interface Sci. 2005, 282, 188.

    11. [11]

      (11) Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1982, 86, 3866.

    12. [12]

      (12) Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1983, 87, 506.

    13. [13]

      (13) Malovikova, A.; Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1984, 88, 1930.

    14. [14]

      (14) Hansson, P.; Almgren, M. J. Phys. Chem. 1995, 99, 16684.

    15. [15]

      (15) Wang, C.; Tam, K. C. Langmuir 2002, 18, 6484.

    16. [16]

      (16) Wang, C.; Tam, K. C,; Jenkins, R. D. ; Tan C. B. J. Phys. Chem. B 2003, 107, 4667.

    17. [17]

      (17) Langevin, D. Adv. Colloid Interface Sci. 2009, 147-148, 170.

    18. [18]

      (18) Trewavas, A. Anal. Biochem. 1967, 21, 324.

    19. [19]

      (19) Izumrudov, V. A.; Zhiryakova, M. V.; ulko, A. A. Langmuir 2002, 18, 10348.

    20. [20]

      (20) Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B. J. Phys. Chem. B 2005, 109, 10458.

    21. [21]

      (21) Cardenas, M.; Schillen, K.; Nylander, T. Phys. Chem. Chem. Phys. 2004, 6,1603.

    22. [22]

      (22) Dias, R.; Melnikov, S. M.; Lindman, B. Miguel, M. Langmuir 2000, 16, 9577.

    23. [23]

      (23) Smith, P.; Lynden-Bell, R. M.; Smith, W. Phys. Chem. Chem. Phys. 2000, 2, 1305.

    24. [24]

      (24) Zabner, J. Adv. Drug Deliver. Rev. 1997, 27, 17.

    25. [25]

      (25) Miguel, M. G.; Pais, A. A. C. C.; Dias, R. S.; Leal, C.; Rosa, M.; Lindman B. Colloids and Surfaces A-Physicochem. Eng. Aspects 2003, 228, 43.

    26. [26]

      (26) Dias, R. S.; Pais, A. A. C. C.; Miguel, M. G.; Lindman, B. Colloids and Surfaces A-Physicochem. Eng. Aspects 2004, 250, 115.

    27. [27]

      (27) Zhao, X.; Shang, Y.; Liu, H.; Hu, Y. J. Colloid Interface Sci. 2007, 314, 478.

    28. [28]

      (28) Evans, D. F.; Wennerstrom, H. The Colloidal Domain. 2nd ed.; Wiley-VCH: New York, 1999.

    29. [29]

      (29) Nguyen, T. T.; Shklovskii, B. I. J. Chem. Phys. 2001, 114, 5905.

    30. [30]

      (30) Cooper, C. L.; Dubin, P. L.; Kayitmazer, A. B.; Turksen, S. Curr. Opin. Colloid Interface Sci. 2005, 10, 52.

    31. [31]

      (31) Linse, P.; Jonsson, M. J. Chem. Phys. 2001, 115, 3406.

    32. [32]

      (32) Wallin, T.; Linse, P. Langmuir 1996, 12, 305.

    33. [33]

      (33) Wallin, T.; Linse, P. J. Phys Chem. 1996, 100, 17873.

    34. [34]

      (34) Wallin, T.; Linse, P. J. Phys. Chem. B 1997, 101, 5506.

    35. [35]

      (35) Savariar, E. N.; Ghosh S.; nzález, D. C.; Thayumanavan, S. J. Am. Chem. Soc. 2008, 130, 5416.

    36. [36]

      (36) Darden, T.; York, D.; Pedersen, L. J. Phys Chem. 1993, 98, 10089.

    37. [37]

      (37) von Ferber, C.; L?wen, H. Faraday Discuss. 2005,?128, 389.

    38. [38]

      (38) ldraich, M.; Schwartz, J. R.; Burns, J. L. Colloids and Surfaces A-Physicochemi. Eng. Aspects 1997, 125, 231.

    39. [39]

      (39) Guillot, S.; Delsanti, M.; Desert, S.; Langevin, D. Langmuir 2003, 19, 230.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    5. [5]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    8. [8]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    9. [9]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    19. [19]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(1233)
  • Abstract views(3146)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return