Citation: SU Ya-Ling, LI Yi, DU Ying-Xun, LEI Le-Cheng. Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 939-945. doi: 10.3866/PKU.WHXB20110401 shu

Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes

  • Received Date: 1 November 2010
    Available Online: 24 February 2011

    Fund Project: 河海大学水文水资源与水利工程科学国家重点实验室开放研究基金(2009490911)与国家自然科学青年基金(20906097)资助项目 (2009490911)与国家自然科学青年基金(20906097)

  • Improving the photocatalytic activity and the utilization of visible light of TiO2 is the most important research topics in the photocatalytic field. To improve the photocatalytic activity of TiO2, we used chemical vapor deposition (CVD) to dope TiO2 nanotubes with fluorine. Scanning electron microscopy (SEM) images showed that the annealing temperature significantly affected the morphological integrity of TiO2 nanotubes. Upon annealing at 550 and 700 °C, the structure of F-doped TiO2 nanotubes suffered from an observable disintegration of morphological integrity. X-ray diffraction (XRD) results indicated that the F impurity retarded the anatase-rutile phase transition. Fluorine was successfully doped into TiO2 by CVD, as indicated by the X-ray photoelectron spectroscopy (XPS) results. F-doped TiO2 nanotubes showed higher photocatalytic activity. First-principles calculations suggested that the F 2p states were located in the lower-energy range of valence band (VB) and less mixed with O 2p states. It thus contributed little to the reduction of the optical band gap. This is consistent with the finding that the band gap of F-doped TiO2 is very close to that of undoped TiO2. Therefore, the higher catalytic activity of F-doped TiO2 should be attributed to the creation of surface oxygen vacancies upon F-doping, which enhances surface acidity and increases the amount of Ti3+ ions.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. 2000, 1, 1.

    2. [2]

      (2) Linsebigler, A. L.; Lu, G. Q.; Yates, T., Jr. Chem. Rev. 1995, 95, 735.

    3. [3]

      (3) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

    4. [4]

      (4) Mokawa, T.; Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Jpn. J. Appl. Phys. 2001, 40, 561.

    5. [5]

      (5) Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483.

    6. [6]

      (6) Khan, S. U. M.; Al-shahry, M.; Ingler, W. B., Jr. Science 2002, 297, 2243.

    7. [7]

      (7) Irie, H.; Watanabe, Y.; Hashimoto, K. Chem. Lett. 1998, 32, 772.

    8. [8]

      (8) Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Chem. Lett. 2003, 32, 330.

    9. [9]

      (9) Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364.

    10. [10]

      (10) Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.; Liu, Y. J. Chem. Mater. 2005, 17, 1548.

    11. [11]

      (11) Song, S.; Tu, J. J.; Xu, L. J.; Xu, X.; He, Z. Q.; Qiu, J. P.; Ni, J. G.; Chen, J. M. Chemosphere 2008, 73, 1401.

    12. [12]

      (12) Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.

    13. [13]

      (13) Li, D.; Haneda, H.; Hishita, S.; Kolodiazhnyi T.; Haneda, H. J. Solid State Chem. 2005, 178, 3293.

    14. [14]

      (14) Li, D.; Haneda, H.; Hishita, S.; Ohashi,N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126, 69.

    15. [15]

      (15) Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Patrik, L. J. Photochem. Photobiol. A 2006, 184, 282.

    16. [16]

      (16) Tang, J.; Quan, H.; Ye, J. Chem. Mater. 2007, 19, 116.

    17. [17]

      (17) Varghese, O. K.; ng, D.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.

    18. [18]

      (18) Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Environ. Sci. Technol. 2005, 39, 3770.

    19. [19]

      (19) Hahn, R.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2007, 9, 947.

    20. [20]

      (20) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 2100.

    21. [21]

      (21) Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2005, 7, 505.

    22. [22]

      (22) Taveira, L. V.; Macak, J. M.; Tsuchiya, H.; Dick, L. P.; Schmuki, P. J. Electrochem. Soc. 2005, 152, B405.

    23. [23]

      (23) Macak, J. M.; Sirotna, K.; Schmuki, P. Electrochim. Acta 2005, 50, 3679.

    24. [24]

      (24) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J Mater. Res. 2005, 20, 230.

    25. [25]

      (25) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova S.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 7463.

    26. [26]

      (26) Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H.; Dick L. F. P.; Schmuki, P. Electrochem. Commun. 2006, 8, 544.

    27. [27]

      (27) Zlamal, M.; Macak, J. M.; Schmuki, P.; Krysa, J. Electrochem. Commun. 2007, 9, 2822.

    28. [28]

      (28) Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol. 2007, 41, 4735.

    29. [29]

      (29) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Kleber, S.; Schmuki, P. Chem. Phys. Lett. 2006, 419, 426.

    30. [30]

      (30) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano. Lett. 2006, 6, 1080.

    31. [31]

      (31) Giovanni, A.; Battiston, G. A.; Gerbasi, R.; Porchia, M.; Man , A. Thin Solid Films 1994, 239, 186.

    32. [32]

      (32) Yu, J. C.; Ho, W. K.; Yu, J. G.; Hark, S. K.; Iu, K. Langmuir 2003, 19, 3889.

    33. [33]

      (33) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Mat. 2002, 14, 2717.

    34. [34]

      (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

    35. [35]

      (35) Lin, J.; Yu, J. C. J. Photochem. Photobiol. A: Chem. 1998, 116, 63.

    36. [36]

      (36) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.

    37. [37]

      (37) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.

    38. [38]

      (38) Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125.

    39. [39]

      (39) Sanjinés, R.; Tang, H.; Berger, H.; zzo, F.; Margaritondo, G.; Lévy, F. J. Appl. Phys. 1994, 75, 2945.

    40. [40]

      (40) Bendavid, A.; Martin, P. J.; Jamting, A.; Takikawa, H. Thin Solid Films 1999, 355-356, 6.

    41. [41]

      (41) Chang, H. J.; Kong, K. J.; Choi, Y. S.; In, E. J.; Choi, Y. M.; Baeg, J. O.; Moon, S. J. Chem. Phys. Lett. 2004, 398, 449.

    42. [42]

      (42) Zhao, J. X.; Dai, B. Q. Mater. Chem. Phys. 2004, 88, 244.

    43. [43]

      (43) Yang, K. S.; Dai, Y.; Huang, B. B., Whangbo, M. H. Chem. Mater. 2008, 20, 6528.

    44. [44]

      (44) Argaman, N.; Mako, G. Am. J. Phys. 2000, 68, 69.


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    13. [13]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

Metrics
  • PDF Downloads(1740)
  • Abstract views(3105)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return