Citation: ZHANG Qi-Bo, HUA Yi-Xin. Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 655-663. doi: 10.3866/PKU.WHXB20110339 shu

Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution

  • Received Date: 20 October 2010
    Available Online: 21 February 2011

    Fund Project: 国家自然科学基金(50864009, 50904031) (50864009, 50904031)高等学校博士学科点专项科研基金(20070674001)资助项目 (20070674001)

  • The effects of three newly synthesized alkylimidazolium based ionic liquids: 1-butyl-3- methylimidazolium hydrogen sulfate ([BMIM]HSO4), 1-hexyl-3-methylimidazolium hydrogen sulfate ([HMIM]HSO4), and 1-octyl-3-methylimidazolium hydrogen sulfate ([OMIM]HSO4), on the corrosion inhibition of copper in 0.5 mol·L-1 H2SO4 solution were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. All the measurements show that these alkylimidazolium ionic liquids are excellent inhibitors for copper in sulfuric acid media and the effectiveness of these inhibitors decreases as follows: [OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4 at the same concentration. Potentiodynamic polarization studies indicate that the three inhibitors are mixed type inhibitors and that both the cathodic and anodic processes of copper corrosion are suppressed. The electrochemical impedance results were evaluated using an equivalent circuit in which two constant phase elements (CPE) were offered for these systems with two time constants. Changes in impedance parameters (charge transfer resistance and double layer capacitance) with the addition of the inhibitors also suggest that these imidazolium based molecules act by adsorbing at the copper/solution interface. The adsorption of these imidazolium based compounds on the copper surface in an acidic solution is found to fit the Langmuir adsorption isotherm. Thermodynamic calculations reveal that the adsorption of inhibitors on the metal surface occurs by a physisorption-based mechanism involving a spontaneous process.

  • 加载中
    1. [1]

      (1) Tavakoli, H.; Shahrabi, T.; Hosseini, M. G. Mater. Chem. Phys. 2008, 109, 281.

    2. [2]

      (2) Elmorsi, M. A.; Hassanein, A. M. Corrosion Sci. 1999, 41, 2337.

    3. [3]

      (3) Gassa, L. M.; Ribotta, S. B.; Folquer, M. E.; Vilche, J. R. Corrosion 1998, 54, 179.

    4. [4]

      (4) Zucchi, F.; Grassi, V.; Frignani, A.; Trabanelli, G. Corrosion Sci. 2004, 46, 2853.

    5. [5]

      (5) Walker, R. Corrosion 1973, 29, 290.

    6. [6]

      (6) Walker, R. Corrosion 1975, 31, 97.

    7. [7]

      (7) Kuron, D.; Rother, H. J.; Graefen, H. Werkst. Korros. 1981, 32, 409.

    8. [8]

      (8) Zhao, Y. S.; Pang, Z. Z. Acta Phys. -Chim. Sin. 2003, 19, 419.

    9. [9]

      [赵永生, 庞正智, 物理化学学报, 2003, 19, 419.]

    10. [10]

      (9) Wang, X. Q.; Liu, R. Q.; Zhu, L. Q.; ng, J. W. Acta Phys. -Chim. Sin. 2007, 23, 21.

    11. [11]

      [王献群, 刘瑞泉, 朱丽琴, 宫建伟. 物理化学学报, 2007, 23, 21.]

    12. [12]

      (10) Scendo, M.; Poddebniak, D.; Malyszko, J. J. Appl. Electrochem. 2003, 33, 287.

    13. [13]

      (11) Quraishi, M. A.; Ansari, F. A. J. Appl. Electrochem. 2006, 36, 309.

    14. [14]

      (12) Quraishi, M. A.; Rafiquee, M. Z. A.; Saxena, N.; Khan, S. J. Corrosion Sci. Eng. 2006, 10.

    15. [15]

      (13) El Rehim, S. S. A.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2003, 78, 337.

    16. [16]

      (14) Bentiss, F.; Traisnel, M.; Chaibi, N.; Mernari, B.; Vezin, H.; Lagrenee, M. Corrosion Sci. 2002, 44, 2271.

    17. [17]

      (15) Lebrini, M.; Lagrenee, M.; Vezin, H.; Gengembre, L.; Bentiss, F. Corrosion Sci. 2005, 47, 485.

    18. [18]

      (16) Li, S. L.; Wang, Y. G.; Chen, S. H.; Yu, R.; Lei, S. B.; Ma, H. Y.; Liu, D. X. Corrosion Sci. 1999, 41, 1769.

    19. [19]

      (17) Scendo, M. Corrosion Sci. 2008, 50, 2070.

    20. [20]

      (18) Stupnišek-Lisac, E.; Gazivoda, A.; Modzarac, M. Electrochim. Acta 2002, 47, 4189.

    21. [21]

      (19) Scendo, M. Corrosion Sci. 2007, 49, 2985.

    22. [22]

      (20) El-Maksoud, S. A. A. Electrochim. Acta 2004, 49, 4205.

    23. [23]

      (21) Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Aust. J. Chem., 2004, 57, 113.

    24. [24]

      (22) Earle, M. J.; Seddon, K. R. Ionic Liquids: Green Solvents for the Future; Pure Appl. Chem. ACS Publications: Washington, DC, 2000.

    25. [25]

      (23) Ashassi-Sorkhabi, H.; Eshaghi, M. Mater. Chem. Phys. 2009, 114, 267.

    26. [26]

      (24) Likhanova, N. V.; Dominguez-Aguilar, M. A.; Olivares-Xometl, O.; Nava-Entzana, N.; Arce, E.; Dorantes, H. Corrosion Sci. 2010, 52, 2088.

    27. [27]

      (25) Zhang, Q. B.; Hua, Y. X. Electrochim. Acta 2009, 54, 1881.

    28. [28]

      (26) Zhang, Q. B.; Hua, Y. X. Mater. Chem. Phys. 2010, 119, 57.

    29. [29]

      (27) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2009, 39, 261.

    30. [30]

      (28) Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem. 2009, 39, 1185.

    31. [31]

      (29) Bentiss, F.; Lagrenee, M.; Traisnel, M.; Mernari, B.; Elattari, H. J. Hetrocycl. Chem. 1999, 36, 149.

    32. [32]

      (30) Tripathy, B. C.; Das, S. C.; Singh, P.; Hefter, G. T.; Misra, V. N. J. Electroanal. Chem. 2004, 565, 49.

    33. [33]

      (31) Stupnisek-Lisac, E.; Podbrscek, S.; Soric, T. J. Appl. Electrochem. 1994, 24, 779.

    34. [34]

      (32) ncalves, R. S.; Azambuja, D. S.; Lucho, A. M. S. Corrosion Sci. 2002, 44, 467.

    35. [35]

      (33) Popova, A.; Raicheva, S.; Sokolova, E.; Christov, M. Langmuir 1996, 12, 2083.

    36. [36]

      (34) Hsu, C. H.; Mansfeld, F. Corrosion 2001, 57, 747.

    37. [37]

      (35) Oquzie, E. E.; Li, Y.; Wang, F. H. J. Colloid Interface Sci. 2007, 310, 90.

    38. [38]

      (36) Khaled, K. F.; Hackerman, N. Electrochim. Acta 2004, 49, 485.

    39. [39]

      (37) Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M. Corrosion Sci. 2009, 51, 1073.

    40. [40]

      (38) Hosseini, M.; Mertens, S. F. L.; Ghorbani, M.; Arshadi, M. R. Mater. Chem. Phys. 2003, 78, 800.

    41. [41]

      (39) Elkadi, L.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrenee, M. Corrosion Sci. 2000, 42, 703.

    42. [42]

      (40) Yan, Y.; Li, W. H.; Cai, L. K.; Hou, B. R. Electrochim. Acta 2008, 53, 5953.

    43. [43]

      (41) Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Appl. Surf. Sci. 2005, 239, 154.

    44. [44]

      (42) Hermas, A. A.; Morad, M. S.;Wahdan, M. H. J. Appl. Electrochem. 2004, 34, 95.

    45. [45]

      (43) Abd El Rehim, S. S.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2001, 70, 64.

    46. [46]

      (44) Saleh, M. M. Mater. Chem. Phys. 2006, 98, 83.

    47. [47]

      (45) Saleh, M. R.; Din, A. M. S. E. Corrosion Sci. 1972, 12, 689.

    48. [48]

      (46) Maayta, A. K.; Al-Rawashdeh, N. A. F. Corrosion Sci. 2004, 46, 1129.

    49. [49]

      (47) Lagrenée, B. M.; Bouanisb, M. M.; Traisnelc, M.; Bentiss, F. Corrosion Sci. 2002, 44, 573.

    50. [50]

      (48) Cases, J. M.; Villieras, F. Langmuir 1992, 8, 1251.

    51. [51]

      (49) Abiola, O. K.; Oforka, N. C. Mater. Chem. Phys. 2004, 83, 315.

    52. [52]

      (50) mma, G. K.; Wahdan, M. H. Mater. Chem. Phys. 1995, 39, 209.

    53. [53]

      (51) Smyrl, W. H.; Bockris, J. O. M.; Conway, B. E.; Yeager, E.; White, R. E. Comprehensive Treatise of Electrochemistry; Plenum Press: New York, 1981, Vol. 4.

    54. [54]

      (52) Ma, H. Y.; Chen, S. H.; Yin, B. S.; Zhao, S. Y.; Liu, X. Q. Corrosion Sci. 2003, 45, 867.

    55. [55]

      (53) Quraishi, M. A.; Rafiquee, M. Z. A.; Khan, S.; Saxena, N. J. Appl. Electrochem. 2007, 37, 1153.


  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    3. [3]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    6. [6]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    14. [14]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    18. [18]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

Metrics
  • PDF Downloads(1356)
  • Abstract views(3114)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return