Citation: YUAN Shuai, ZHANG Wen-Ying, LI An-Yang, ZHU Yi-Min, DOU Yu-Sheng. Dynamics Simulation of a New Deactivation Pathway for Stacked Adenines[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 825-830. doi: 10.3866/PKU.WHXB20110337 shu

Dynamics Simulation of a New Deactivation Pathway for Stacked Adenines

  • Received Date: 8 December 2010
    Available Online: 18 February 2011

    Fund Project: 国家自然科学基金(20773168, 21073242) (20773168, 21073242)重庆邮电大学博士启动基金(A2009-63)资助项目 (A2009-63)

  • A semiclassical dynamics simulation study was undertaken to investigate the deactivation of the lowest excited state of π-stacked adenines, as induced by a laser pulse. Only one of the adenines was subjected to a laser pulse in this simulation. The simulation results show that the interaction between the excited adenines (A) and their unexcited neighbors (A′) increases significantly, followed by a shortening of the intermolecular distance. The interbases interaction leads to a new deactivated pathway in which atom C2 in molecule A and atom C2′ in molecule A′ are link to each other and form a “bonded excimer” intermediate. The lifetime of the “bonded excimer” intermediate is about 390 fs. The deformation of the pyrimidine ring at the C2 atom and the displacement of the H2′ atom away from the pyrimidine ring play a significant role in the deactivation process of the “bonded excimer” intermediate. After deactivation, the C2-C2′ dissociates and the released bond energy converts to molecular kinetic energy. Both adenine molecules return to the planar geometries of their ground states.

  • 加载中
    1. [1]

      (1) Taylor, J. S. Accounts Chem. Res. 1994, 27, 76.

    2. [2]

      (2) Vink, A. A.; Roza, L. J. Photochem. Photobiol. B 2001, 65, 101.

    3. [3]

      (3) Beukers, R.; Eker, A.; Lohman, P. DNA Repair 2008, 7, 530.

    4. [4]

      (4) Roca-Sanjuán, D.; Olaso- nzález, G.; nzález-Ramírez, I.; Serrano-Andrés, L.; Merchán, M. J. Am. Chem. Soc. 2008, 130, 10768.

    5. [5]

      (5) Crespo-Hernández, C.; Cohen, B.; Hare, P.; Kohler, B. Chem. Rev. 2004, 104, 1977.

    6. [6]

      (6) Shukla, M.; Leszczynski, J. J. Biomol. Struct. Dyn. 2007, 25, 93.

    7. [7]

      (7) Saigusa, H. J. Photochem.Photobiol. C 2006, 7, 197.

    8. [8]

      (8) de Vries, M.; Hobza, P. Annu. Rev. Phys. Chem. 2007, 58, 585.

    9. [9]

      (9) Liang, X. J.; Cui, L.; Wu, D. Y.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2009, 25, 1605.

    10. [10]

      [梁晓静, 崔 丽, 吴德印, 田中群. 物理化学学报, 2009, 25, 1605.]

    11. [11]

      (10) Weng, K. F.; Wang, H. G.; Zhu, X. M.; Zheng, X. M. Acta Phys. -Chim. Sin. 2009, 25, 1799.

    12. [12]

      [翁克凤, 王惠钢, 祝新明, 郑旭明. 物理化学学报, 2009, 25, 1799.]

    13. [13]

      (11) Daniels, M.; Hauswirth, W. Science 1971, 171, 675.

    14. [14]

      (12) Vigny, P. Acad. Sci. Ser. D 1971, 272, 3206.

    15. [15]

      (13) Pecourt, J. M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348.

    16. [16]

      (14) Ismail, N.; Blancafort, L.; Olivucci, M.; Kohler, B.; Robb, M. J. Am. Chem. Soc. 2002, 124, 6818.

    17. [17]

      (15) Zgierski, M. Z.; Patchkovskii, S.; Fujiwara, T.; Lim, E. C. Chem. Phys. Lett. 2007, 440, 145.

    18. [18]

      (16) Serrano-Andrés, L.; Merchán, M.; Borin, A. C. Chem. Eur. J. 2006, 12, 6559.

    19. [19]

      (17) Lei, Y. B.; Yuan, S.; Dou, Y. S.; Wang, Y. B.; Wen, Z. Y. J. Phys. Chem. A, 2008, 112, 8497.

    20. [20]

      (18) Crespo-Hernández, C.; Kohler, B. Nature 2005, 436, 1141.

    21. [21]

      (19) Middleton, T.; de La Harpe, K.; Charlene, S.; Law, Y. K.; Crespo-Hernández, C.; Kohler, B. Annu. Rev. Phys. Chem. 2009, 60, 217.

    22. [22]

      (20) Wang, Y. S.; Haze, O.; Dinnocenzo, J.; Farid, S.; Farid, R.; uld, I. J. Org. Chem. 2007, 72, 6970.

    23. [23]

      (21) Ben-Nun, M.; Martínez, T. J. Adv. Chem. Phys. 2002, 124, 439.

    24. [24]

      (22) Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1992, 114, 1606.

    25. [25]

      (23) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513.

    26. [26]

      (24) Dou, Y. S.; Torralva, B.; Allen, R. J. Mod. Optics. 2003, 50, 2615.

    27. [27]

      (25) Dou, Y. S.; Torralva, B.; Allen, R. Chem. Phys. Lett. 1998, 378, 323.

    28. [28]

      (26) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 49.

    29. [29]

      (27) Dou, Y. S.; Lei, Y. B.; Wen, Z. Y.;Wang, Y. B.; Lo, G.; Allen, R. Appl. Surf. Sci. 2007, 253, 6400.

    30. [30]

      (28) Dou, Y. S.; Lei, Y. B.; Li, A. Y.; Wen, Z. Y.; Torralva, B.; Lo, G.; Allen, R. J. Phys. Chem. A 2007, 111, 1133.

    31. [31]

      (29) Yuan, S.; Dou, Y. S.; Wu, W. F.; Hu, Y.; Zhao, J. S. J. Phys. Chem. A 2008, 112, 13326.

    32. [32]

      (30) Yuan, S.; Wu, W. F.; Dou, Y. S.; Zhao, J. S. Chin. Chem. Lett. 2008, 19, 1379.

    33. [33]

      (31) Dou, Y. S.; Hu, Y.; Yuan, S.; Wu, W. F.; Tang, H. Mol. Phys. 2009, 107, 181.

    34. [34]

      (32) Yuan, S.; Wu, W. F.; Wen, Z. Y.; Shu, K. X.; Tang, H.; Dou, Y. S.; Lo, G. Mol. Phys. 2010, 108, 3431.

    35. [35]

      (33) Dou, Y. S.; Yuan, S.; Lo, G. V. Appl. Surf. Sci. 2007, 253, 6404.

    36. [36]

      (34) Li, A. Y.; Yuan, S.; Dou, Y. S.; Wang, Y. B.; Wen, Z. Y. Chem. Phys. Lett. 2009, 478, 28.

    37. [37]

      (35) Zhang, W. Y.; Yuan, S.; Li, A. Y.; Dou, Y. S.; Zhao, J. S.; Fang, W. H. J. Phys. Chem. C 2010, 114, 5594.

    38. [38]

      (36) Dou, Y. S.; Xiong, S. S.; Wu, W. F.; Yuan, S.; Tang, H. J. Photochem. Photobiol. B 2010, 101, 31.

    39. [39]

      (37) Perun, S.; Sobolewski, A. L.; Domcke, W. J. Am. Chem. Soc. 2005, 127, 6257.


  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    13. [13]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(1016)
  • Abstract views(2270)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return