Citation: MA Yan-Hui, ZHAO Hui-Ling, TANG Sheng-Jie, HU Jun, LIU Hong-Lai. Synthesis of Micro/Mesoporous Composites and Their Application as CO2 Adsorbents[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 689-696. doi: 10.3866/PKU.WHXB20110335 shu

Synthesis of Micro/Mesoporous Composites and Their Application as CO2 Adsorbents

  • Received Date: 21 September 2010
    Available Online: 18 February 2011

    Fund Project: 国家自然科学基金(20736002, 20776045) (20736002, 20776045) 国家高技术研究发展计划(863)(2008AA062302) (863)(2008AA062302)长江学者创新团队(IRT0721)资助项目 (IRT0721)

  • We synthesized a series of micro/mesoporous composites of S-β-MCM41(c), P-β-MCM41(c), P-ZSM-MCM41(c), P-ZSM-C through a two-step crystallization process. During this process, the microporous zeolite precursor solution (S) or the zeolite powder (P) was first synthesized and treated with NaOH solution with different concentration (c), and then the mesopores were induced by hexadecyltrimethyl- ammoniumbromide (CTAB) as a soft template or mesoporous carbon as a hard template. The effects of the type of inorganic precursor, the base concentration, and the type of mesoporous template on the structure and property of the micro/mesoporous composites were investigated. The results of X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms showed that the products contained micropores and mesopores, simultaneously. The CO2 adsorption capacities of these micro/mesoporous composites were obviously improved compared to the pure microporous or mesoporous materials. Among them, P-ZSM-MCM41(2) had the highest CO2 adsorption capacity of 1.51 mmol·g-1, which was almost twice that of the original ZSM-5.

  • 加载中
    1. [1]

      (1) IPCC Special Report on Carbon dioxide Capture and Storage. http://arch.rivm.nl/env/int/ipcc/pages_media/SRCCS-final/IPCCSpecialReportonCarbondioxideCaptureandStorage.htm.

    2. [2]

      (2) Chou, C. T.; Chen, C. Y. Sep. Purif. Technol. 2004, 39, 51.

    3. [3]

      (3) Chue, K. T.; Kim, J. N.; Yoo, Y. J.; Cho, S. H. Ind. Eng. Chem. Res. 1995, 34, 591.

    4. [4]

      (4) Pakseresht, S.; Kazemeini, M.; Akbarnejad, M. M. Sep. Purif. Technol. 2002, 28, 53.

    5. [5]

      (5) Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Energy Fuels 2001, 15, 279.

    6. [6]

      (6) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939.

    7. [7]

      (7) He, Y.; Seaton, N. A. Langmuir 2006, 22, 1150.

    8. [8]

      (8) Liu, X.; Li, J.; Zhou, L.; Huang, D.; Zhou, Y. Chem. Phys. Lett. 2005, 415, 198.

    9. [9]

      (9) Proke?ova, P.; Mintova, S.; Cejka, J.; Bein, T. Microporous Mesoporous Mat. 2003, 64, 165.

    10. [10]

      (10) Proke?ova, P.; Mintova, S.; Cejka, J.; Bein, T. Mater. Sci. Eng. C 2003, 23, 1001.

    11. [11]

      (11) Karlsson, A.; Stocker, M.; Schmidt, R. Microporous Mesoporous Mat. 1999, 27, 18l.

    12. [12]

      (12) Poladi, R. H. P. R.; Landry, C. C. J. Solid State Chem. 2002, 167, 363.

    13. [13]

      (13) Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J. J. Am. Chem. Soc. 2000, l22, 8791.

    14. [14]

      (14) Han, W. S.; Sun, Y. Chem. Mater. 2002, l4, 1144.

    15. [15]

      (15) Zhang, Z. Z.; Xiao, F. S. J. Am, Chem, Soc. 200l, 123, 5014.

    16. [16]

      (16) Shen, B. J.; Huang, H. Y.; Li, H. L. Preparation Method of High Silicon Aluminium Ratio small Crystal NaY Molecular sieve. CN Patent 1393403.A, 2003.

    17. [17]

      [申宝剑, 黄海燕, 李海丽. 一种中微孔复合分子筛组合物的分步晶化合成方法: 中国, CN 1393403.A

    18. [18]

      [P]. 2003.]

    19. [19]

      (17) Li, G.; Kan, Q. B.; Wu, T. H. Acta Chem. Sin. 2002, 60, 759.

    20. [20]

      [李 工, 阚秋斌, 吴通好, 化学学报, 2002, 60, 759.]

    21. [21]

      (18) Guo, W. P.; Huang, L. M.; Chen, H. Y. J. Chem. Chin. Univ. 1999, 20, 356.

    22. [22]

      [郭万平, 黄立民, 陈海鹰. 高等学校化学学报, 1999, 20, 356.]

    23. [23]

      (19) Zhang, H.; Wu, D.; Sun, Y. H. J. Fuel Chem. Technol. 2001, 29 (Suppl.1), 28.

    24. [24]

      [张 晔, 吴 东, 孙予罕. 燃料化学学报, 2001, 29(增刊), 28.]

    25. [25]

      (20) Li, F. X.; Wu, L.; Dou, T. J. Fuel Chem. Technol. 1998, 26, 102.

    26. [26]

      [李福祥, 吴 岚, 窦 涛. 燃料化学学报, 1998, 26, 102.]

    27. [27]

      (21) Huang, H. Y.; Shen, B. J.; Xu, C. M. Acta Chim. Sin. 2002, 60, 1350.

    28. [28]

      [黄海燕, 申宝剑, 徐春明. 化学学报, 2002, 60, 1350.]

    29. [29]

      (22) Kim, S.; Shah, J.; Pinnavaia, T. J. Chem. Mater. 2003, 15, 1664.

    30. [30]

      (23) Yang, Z.; Xia, Y.; Mokaya, R. Adv. Mater. 2004, 16, 727.

    31. [31]

      (24) Zhuo, S.; Huang, Y.; Hu, J.; Liu, H.; Hu, Y.; Jiang, J. J. Phys. Chem. C 2008, 112, 11295.


  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(1721)
  • Abstract views(2777)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return