Citation:
LI Min-Jie, LIU Wei-Xia, PENG Chun-Rong, LU Wen-Cong. A First-Principles Method for Predicting Redox Potentials of Nucleobases and the Metabolites in Aqueous Solution[J]. Acta Physico-Chimica Sinica,
;2011, 27(03): 595-603.
doi:
10.3866/PKU.WHXB20110333
-
Redox potentials are of importance in understanding the charge/electron transfer processes involved in nucleic acids. In this study, the protocol of the B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) in gas phase and the HF-COSMORS/UAHF for the solvation energy calculations at the HF-CPCM/UAHF re-optimized solution geometries in aqueous solution, as implemented in the Gaussian 03 programs, has been established to predict the redox potentials of the aromatic compounds in aqueous solution. In comparison with the 82 experimental redox potentials, the root mean square deviation (RMSD) is only 0.124 V. This scheme has been employed successfully to calculate the redox potentials of various nucleobases and the metabolites. The structural and charge/electron transfer impact on the redox potentials was discussed. The implications to the design of new redox-active nucleobase derivatives were suggested.
-
-
-
[1]
(1) Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. J. Am. Chem. Soc. 1992, 114, 4701.
-
[2]
(2) (a) Colson, A. O.; Sevilla, M. D. Int. J. Radiat. Biol. 1995, 67, 627. (b) Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. B 2001, 105, 10115. (c) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 5472. (d) Li, X.; Sanche, L.; Sevilla, M. D. J. Phys. Chem. B 2004, 108, 19013.
-
[3]
(3) Desfrancois, D.; Abdoul-Carime, H.; Schermann, J. P. J. Chem.Phys. 1996, 104, 7792.
-
[4]
(4) Huels, M. A.; Hahndorf, I.; Illengerger, E.; Sanche, L. J. Chem. Phys. 1998, 108, 1309.
-
[5]
(5) (a) Li, M. J.; Liu, L.; Wei, K.; Fu, Y.; Guo, Q. X. J. Phys. Chem. B 2006, 110, 13582. (b) Li, M. J.; Liu, L.; Fu, Y.; Guo, Q. X. J. Phys. Chem. B 2005, 109, 13818.
-
[6]
(6) Burrows, C. J.; Muller, J. G.; Chem. Rev. 1998, 98, 1109.
-
[7]
(7) Kelley, S. O.; Barton, J. K. Science 1999, 283, 375.
-
[8]
(8) Berlin, Y. A.; Burin, A. L.; Ratner, M. A. J. Am. Chem. Soc. 2001, 123, 260.
-
[9]
(9) (a) Giese, B.; Amaudrut, J.; K?hler, A. K.; Spormann, M.; Wessely, S. Nature 2001, 412, 318. (b) Giese, B. Accounts Chem. Res. 2000, 33, 631.
-
[10]
(10) (a) Anusiewicz, I.; Berdys-Kochanska, J.; Sobczyk, M.; Skurski, P.; Simons, J. J. Phys. Chem. A 2004, 108, 11381. (b) Anusiewicz, I.; Sobczyk, M.; Berdys-Kochanska, J.; Skurski, P.; Simons, J. J. Phys. Chem. A 2005, 109, 484.
-
[11]
(11) LaVerne, J. A.; Pimblott, S. M. Radiat. Res. 1995, 141, 208.
-
[12]
(12) (a) Gu, J. D.; Xie, Y. M.; Schaefer, H. F. J. Am. Chem. Soc. 2005, 127, 1053. (b) Hou, R.; Gu, J.; Xie, Y.; Yi, X.; Schaefer, H. F. J. Phys. Chem. B 2005, 109, 22053. (c) Gu, J. D.; Xie, Y. M.; Schaefer, H. F. J. Am. Chem. Soc. 2006, 128, 1250. (d) Gu, J. D.; Xie, Y. M.; Schaefer, H. F. Nucleic Acids Res. 2007, 35, 5165. (e) Lyngdoh, R. H. D.; Schaefer, H. F. Accounts Chem. Res. 2009, 42, 563. (f) Jaeger H. M. and Schaefer, H. F. J. Phys. Chem. B 2009, 113, 8142.
-
[13]
(13) Li, X.; Sevilla, M. D.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 13668.
-
[14]
(14) (a) Berdys, J.; Anusiewicz, I.; Skurski, P.; Simons, J. J. Am. Chem. Soc. 2004, 126, 6441. (b) Berdys, J.; Skurski, P.; Simons, J. J. Phys. Chem. B 2004, 108, 5800.
-
[15]
(15) Hendricks, J. H.; Lyapustina, S. A.; de Clercq, H. L.; Bowen, K. H. J. Chem. Phys. 1998, 108, 8.
-
[16]
(16) (a) Fu, Y.; Liu, L.; Yu, H. Z.; Wang, Y. M.; Guo, Q. X. J. Am. Chem. Soc. 2005, 127, 7227. (b) Fu, Y.; Liu, L.; Wang, Y. M.; Li, J. N.; Yu, T. Q.; Guo, Q. X. J. Phys. Chem. A 2006, 110, 5874. (c) Feng, Y.; Liu, L.; Fang, Y.; Guo, Q. X. J. Phys. Chem. A 2002, 106, 11518.
-
[17]
(17) Abraham, J.; sh, A. K.; Schuster, G. B. J. Am. Chem. Soc. 2006, 128, 5346.
-
[18]
(18) Becker, D.; Sevilla, M. D. Adv. Radiat. Biol. 1993, 17, 121.
-
[19]
(19) Baik, M. H.; Silverman, J. S.; Yang, I. V.; Ropp, P. A.; Szalai, V. A.;Yang, W. T.; Thorp, H. H. J. Phys. Chem. B 2001, 105, 6437.
-
[20]
(20) Baik, M.-H.; Ziegler, T.; Schauer, C. K. J. Am. Chem. Soc. 2000, 122, 9143.
-
[21]
(21) Kettle, L. J.; Bates, S. P.; Mount, A. R. Phys. Chem. Chem. Phys. 2000, 2, 195.
-
[22]
(22) Trasatti, S. Pure Appl. Chem. 1986, 58, 955.
-
[23]
(23) (a) Kawai, K.; Wata, Y.; Ichinose, N.; Majima, T. Angew. Chem. Int. Edit. 2000, 39, 4327. (b) Kawai, K.; Wata, Y.; Hara, M.; Tojo, S.; Majima, T. J. Am. Chem. Soc. 2002, 124, 3586. (c) Kawai, K.; Takada, T.; Tojo, S.; Ichinose, N.; Majima, T. J. Am. Chem. Soc. 2001, 123, 12688.
-
[24]
(24) (a) Caruso, T.; Carotenuto, M.; Vasca, E.; Peluso, A. J. Am. Chem. Soc. 2005, 127, 15040. (b) Caruso, T.; Capobianco, A.; Peluso, A. J. Am. Chem. Soc. 2007, 129, 15347.
-
[25]
(25) (a) Lewis, F. D. Photochem. Photobiol. 2005, 81, 65. (b) Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R. Accounts Chem. Res. 2001, 34, 159.
-
[26]
(26) (a) Steenken, S.; Jovanovic, S. V.; Bietti, M.; Bernhard, K. J. Am. Chem. Soc. 2000, 122, 2373. (b) Steenken, S. Biol. Chem. 1997, 378, 1293. (c) Steenken, S. Chem. Rev. 1989, 89, 503. (d) Jovanovic, S. V.; Simic, M. G. J. Phys. Chem. 1986, 90, 974.
-
[27]
(27) Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119, 617.
-
[28]
(28) (a) Close, D. M. J. Phys. Chem. A 2004, 108, 10376. (b) Crespo-Hernández, C. E.; Arce, R.; Ishikawa, Y.; rb, L.; Leszczynski, J.; Close, D. M. J. Phys. Chem. A 2004, 108, 6373. (c) Close, D. M.; Øhman, K. T. J. Phys. Chem. A 2008, 112, 11207. (d) Close, D. M. J. Phys. Chem. A, 2008, 112, 8411. (e) Close, D. M.; Crespo-Hernández, C. E.; rb, L.; Leszczynski, J. J. Phys. Chem. A 2006, 110, 7485.
-
[29]
(29) Fukuzumi, S.; Miyao, H.; Ohkubo, K.; Suenobu, T. J. Phys. Chem. A 2005, 109, 3285.
-
[30]
(30) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.
-
[31]
(31) Lecomte, J. P.; Kirsch-De Mesmaeker, A.; Kelly, J. M.; Tossi, A. B.; Görner, H. Photochem. Photobiol. 1992, 55, 681.
-
[32]
(32) Langmaier, J.; Samec, Z.; Samcová, E.; Hobza, P.; Reha, D. J. Phys. Chem. B 2004, 108, 15896.
-
[33]
(33) Kittler, L.; L?ber, G.; llmick, F.; Berg, H. J. Electroanal. Chem. 1980, 116, 503.
-
[34]
(34) Oliveira-Brett, A. M.; Piedade, J. A. P.; Silva, L. A.; Diculescu, V. C. Anal. Biochem. 2004, 332, 321.
-
[35]
(35) Guirado, G.; Fleming, C. N.; Lingenfelter, T. G.; Williams, M. L.; Zuihof, H.; Dinnocenzo, J. P. J. Am. Chem. Soc. 2004, 126, 14086.
-
[36]
(36) Fiebig, T.; Wan, C.; Zewail, A. H. Chem. Phys. Chem. 2002, 3,781.
-
[37]
(37) Crespo-Hernández, C. E.; Close, D. M.; rb, L.; Leszczynski, J. J. Phys. Chem. B 2007, 111, 5386.
-
[38]
(38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004
-
[39]
(39) Klamt, A.; Schüürmann, G. J. Chem. Soc. Perkin Trans. 1993, 2, 799.
-
[40]
(40) (a) Barone, V.; Cossi, M. J. Phem. Chem. A 1998, 102, 1995. (b) Fu, Y.; Wang, H. J.; Chong, S. S.; Guo, Q. X.; Liu, L. J. Org. Chem. 2009, 74, 810. (c) Fu, Y.; Liu, L.; Li, R. Q.; Liu, R.; Guo, Q. X. J. Am. Chem. Soc. 2004, 126, 814.
-
[41]
(41) Liptak, D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem. Soc. 2002, 124, 6421.
-
[42]
(42) Suatoni, J. C.; Snyder, R. E.; Clark, R. O. Anal. Chem. 1961, 33, 1894
-
[43]
(43) Faraggi, M.; Broitman, F.; Trent, J. B.; Klapper, M. H. J. Phys. Chem. 1996, 100, 14751.
-
[44]
(44) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data, 1988, 17, Supplement 1.
-
[45]
(45) Prat, F.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1998, 120, 845.
-
[46]
(46) Grinstaff, M. W. Angew. Chem. Int. Edit. 1999, 38, 3629.
-
[47]
(47) Schuster, G. B. Accounts Chem. Res. 2000, 33, 253.
-
[1]
-
-
-
[1]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[2]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[3]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[4]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[5]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[6]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[7]
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
-
[8]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[9]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[10]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[11]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[12]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[13]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[14]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[15]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[16]
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
-
[17]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[18]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[19]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[20]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[1]
Metrics
- PDF Downloads(1102)
- Abstract views(2459)
- HTML views(14)