Citation: CHENG Li, ZHANG Zi-Ying, SHAO Jian-Xin. Electronic Structures and Optical Properties of the O Vacancy in ZnO[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 846-850. doi: 10.3866/PKU.WHXB20110324 shu

Electronic Structures and Optical Properties of the O Vacancy in ZnO

  • Received Date: 9 November 2010
    Available Online: 15 February 2011

    Fund Project: 国家自然科学基金(61065006) (61065006)新疆凝聚态相变与微结构实验室开放课题(XJDX0912-2010-06)资助项目 (XJDX0912-2010-06)

  • The electronic structures and optical properties of ZnO0.875 were calculated by the ultra-soft pseudo-potential plane wave (pp-pw) method based on density functional theory. The crystal structure of ZnO with oxygen vacancies was optimized using first-principles. The electronic-state densities in pure ZnO and ZnO0.875 were then calculated. The dielectric functions, absorption spectrum, refractive index, extinction coefficient, and reflectivity of ZnO0.875 dominated by electron inter-band transitions were analyzed in terms of the precisely calculated density of state and the polarization dependencies of the optical properties were discussed in detail. Results indicate that the ZnO0.875 crystal is a uniaxial crystal and exhibits some features in the low energy region, which are caused by the O vacancy. Our results provide new insights into the study of the luminescent behavior of ZnO and offer theoretical data for the design and application of ZnO optoelectronic materials.

  • 加载中
    1. [1]

      (1) Rebien, M.; Henrion, W.; Bär, M.; Fischer, C. H. Appl. Phys. Lett. 2002, 80, 3518.

    2. [2]

      (2) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.

    3. [3]

      (3) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.

    4. [4]

      (4) Lambrecht, W. R. L.; Rodina, A. V.; Limpijumnong, S.; Segall, B.; Meyer, B. K. Phys. Rev. B 2002, 65, 075207.

    5. [5]

      (5) Xiong, Z. H.; Jiang, F. H. J. Phys. Chem. Solids 2007, 68, 1500.

    6. [6]

      (6) Mounkachi, O.; Benyoussef, A.; El Kenz, A.; Saidi, E. H.; Hlil, E. K. J. Magn. Magn. Mater. 2008, 320, 2760.

    7. [7]

      (7) Chang, G. S.; Kurmaev, E. Z.; Boukhvalov, W.; Finkelstein, L. D.; Colis, S.; Pedersen, T. M.; Moewes, A.; Dinia, A. Phys. Rev. B 2007, 75, 195215.

    8. [8]

      (8) Sun, Y. M.; Wang, H. Z. Physica B 2003, 325, 157.

    9. [9]

      (9) Kasai, P. H. Phys. Rev. 1963, 130, 989.

    10. [10]

      (10) Kröger, F. A.; Vink, H. J. J. Chem. Phys. 1954, 22, 250.

    11. [11]

      (11) Prosanov, I. Y.; Politov, A. A. Inorg. Mater. 1995, 31, 663.

    12. [12]

      (12) Hahn, D.; Nink, R. Physik Cond. Mater. 1965, 3, 311.

    13. [13]

      (13) Liu, M.; Kitai, A. H.; Mascher, P. J. Lumin. 1992, 54, 35.

    14. [14]

      (14) Bylander, E. G. J. Appl. Phys. 1978, 49, 1188.

    15. [15]

      (15) Dingle, R. Phys. Rev. Lett. 1969, 23, 579.

    16. [16]

      (16) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.

    17. [17]

      (17) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Matter 2002, 14, 2717.

    18. [18]

      (18) Ghosez, P.; Desquesnes, D.; nze, X.; Rabe, K. M. AIP Conf. Proc. 2000, 535, 102.

    19. [19]

      (19) Saha, S.; Sinha, T. P. Phys. Rev. B 2000, 62, 8828.

    20. [20]

      (20) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.

    21. [21]

      (21) Ambrosch-Draxl, C.; Sofo, J. O. Comput. Phys. Commun. 2006, 175, 1.

    22. [22]

      (22) Zhang, Z. Y.; Yang, D. L.; Liu, Y. H.; Cao, H. B.; Shao, J. X.; Jing, Q. Acta Phys. -Chim. Sin. 2009, 25, 1731.

    23. [23]

      [张子英, 杨德林, 刘云虎, 曹海滨, 邵建新, 井 群. 物理化学学报, 2009, 25, 1731.]

    24. [24]

      (23) Cai, M. Q.; Yin, Z.; Zhang, M. S. Appl. Phys. Lett. 2003, 83, 2805.

    25. [25]

      (24) Kohan, A. F.; Ceder, G.; Morgan, D.; Van de Walle, C. G. Phys. Rev. B 2000, 61, 15019.

    26. [26]

      (25) Decremps, F.; Datchi, F.; Saitta, A. M.; Polian, A. Phys. Rev. B 2003, 68, 104101.

    27. [27]

      (26) John, L. F. Phys. Rev. B 1973, 7, 3810.

    28. [28]

      (27) Li, H. X.; Wang, R. H.; Guo, C. H.; Zhang, H. Mater. Sci. Eng. B 2003, 103, 285.

    29. [29]

      (28) De Almeida, J. S.; Ahuja, R. Phys. Rev. B 2006, 73, 165102.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    3. [3]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    4. [4]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    17. [17]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

Metrics
  • PDF Downloads(1813)
  • Abstract views(4032)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return