Citation: ZHONG Ai-Guo, HUANG Ling, JIANG Hua-Jiang. Structure, Spectroscopy and Reactivity of H2S Bonding to Metal(II) Porphyrins[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 837-845. doi: 10.3866/PKU.WHXB20110323 shu

Structure, Spectroscopy and Reactivity of H2S Bonding to Metal(II) Porphyrins

  • Received Date: 29 October 2010
    Available Online: 15 February 2011

    Fund Project: 浙江省自然科学基金(Y4110348)资助项目 (Y4110348)

  • We investigated eight divalent metal cations M(II) (M=Ca, Mg, Mn, Zn, Cu, Ni, Fe, Co) for the formation of singly H2S-bonded metalated porphyrin-imidazole complexes (L-MP) and H2S bi-bonding of these metalated porphyrin complexes (L-MP*-L, L=H2S, P=porphyrin-imidazole, P*=porphyrin). We investigated their structures, spectroscopic and reactivity properties using density functional theory (DFT), time dependent (TD) DFT, and conceptual DFT approaches using global and local descriptors. Their bonding properties were also analyzed by natural bond orbital (NBO) analysis and by the frontier-electron theory of chemical reactivities. The calculated results reveal that the structures, spectra and reactivities of the L-MP and L-MP*-L complexes are very different from those of their precursor MP. Mg2+ can form stable complexes with porphyrin-imidazole while Ca2+ can not. The ligand L has little influence on the structure of the porphyrin-imidazole. L-MP is more reactive during electrophilic and nucleophilic reactions. UV-Vis spectra showed shifted peaks because of metalation. The iron complex differs from the other metal ion complexes in bonding and reactivity properties such as charge distribution, stability, and nucleophilicity. The transition from the high-spin (S=3) five-coordinate FeP to the lower-spin (S=1) six-coordinate L-FeP leads to a change in the Fukui index (fFe+) of the iron porphyrin. A few quantitative linear relationships were found for the bonding interactions, the charge distributions, and the DFT chemical reactivity indices. In addition, we note that the spin polarization Fukin function plays an important role in metal specificity and reactivity. These results provide in-depth insights into the vascular disorder from endogenous H2S bonded with metal porphyrin complexes.

  • 加载中
    1. [1]

      (1) Zai, Z. H. J. Clin. Res. 2009, 26, 1966.

    2. [2]

      [翟志红, 王 忠. 医学临床研究, 2009, 26, 1966.]

    3. [3]

      (2) Sanderson, K. Nature 2009, 459, 500.

    4. [4]

      (3) (a) Leslie, M. Science 2008, 320, 1155. (b) Szabo, C. Nat. Rev. Drug. Discov. 2007, 6, 917.

    5. [5]

      (4) Fiorcci, S.; Dismatti, E.; Cifino, G.; Wallace, J. L. Gastroenterology 2006, 131, 259

    6. [6]

      (5) (a) Mueller, E. G. Nat. Chem. Biol. 2006, 2, 185. (b) Lefer, D. J. Proc. Natl. Acad. Sci. 2007, 104, 17907

    7. [7]

      (6) Cui, B. Q.; Zhao, D. X.; ng, L. D. Acta Chim. Sin., 2008, 26, 1627.

    8. [8]

      [崔宝秋, 赵东霞, 宫利东. 化学学报, 2008, 26, 1627.]

    9. [9]

      (7) Zhou, Y.; Zhang, Z. H.; Zhu, Z. A. Chin. J. Inorg. Chem. 1998, 14, 388.

    10. [10]

      [周 毅, 张智慧, 朱志昂. 无机化学学报, 1998, 14, 388.]

    11. [11]

      (8) Zhong, A. G.; Wu, J. Y.; Yan, H.; Jin, Y. X.; Dai, G. L.; Jiang, H. J.; Pan, F. Y.; Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 1367.

    12. [12]

      [钟爱国, 吴俊勇, 闫 华, 金燕仙, 戴国梁, 蒋华江, 潘富友, 刘述斌. 物理化学学报, 2009, 25, 1367.]

    13. [13]

      (9) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    14. [14]

      (10) Parr, R. G.; Szentpaly, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 105, 1922.

    15. [15]

      (11) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.

    16. [16]

      (12) Mulliken, R. S. J. Chem. Phys. 1934, 2, 782.

    17. [17]

      (13) Pearson, R. G. Structure and Bonding in Chemical Hardness; Sen, K. D. Ed.; Springer-Verlag: Berlin, 1993; pp 101-114.

    18. [18]

      (14) Koopmans, T. A. Physica 1933, 1, 104.

    19. [19]

      (15) Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205.

    20. [20]

      (16) Ayers, P. W.; Morell, C.; De-Proft, D.; Geerlings, P. Chem. -Eur. J. 2007, 13, 8240.

    21. [21]

      (17) Galvan, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92, 6470.

    22. [22]

      (18) Galvan, M.; Vargas, R. J. Phys. Chem. 1992, 96, 1625.

    23. [23]

      (19) Vargas, R..; Galvan, M. J. Phys. Chem. 1996, 100, 14651.

    24. [24]

      (20) Ghanty, T. K.; Ghosh, S. K. J. Am. Chem. Soc. 1994, 116, 3943.

    25. [25]

      (21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.02; Gaussian, Inc.: Pittsburgh, PA, 2003.

    26. [26]

      (22) Shannon, R. D.; Prewreitt, C. F. Acta Cryst. B 1969, 25, 925.

    27. [27]

      (23) Liao, M. S.; Huang, M. J.; Watts, J. D. J. Phys. Chem. A 2010, 114, 9554.

    28. [28]

      (24) Huang, Y.; Zhong, A. G.; Rong, C. Y.; Xiao, X. M.; Liu, S. B. J. Phys. Chem. A 2008, 112, 305.

    29. [29]

      (25) Tigran, S. K.; Astghik, A. H.; Alexei, V. I.; Peter, C. F. Inorg. Chem. 2009, 48, 11236.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    20. [20]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

Metrics
  • PDF Downloads(1221)
  • Abstract views(3108)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return