Citation: TANG Jing, TIAN Xiao-Chun, ZHOU Fu-Qing, LIU Yue-Qiang, LIN Jian-Hang. Mechanism of Au Electrodeposition onto Indium Tin Oxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 641-646. doi: 10.3866/PKU.WHXB20110322 shu

Mechanism of Au Electrodeposition onto Indium Tin Oxide

  • Received Date: 21 October 2010
    Available Online: 15 February 2011

    Fund Project: 国家自然科学基金(20873112) (20873112)国家光电子晶体材料工程技术研究中心开放课题(2005DC105003)资助项目 (2005DC105003)

  • Cyclic voltammetric and chronoamperometric methods were used to study the initial stage of Au electrodeposition on an indium tin oxide (ITO) surface. The nucleation process was controlled by the diffusion of [AuCl4]-. The cyclic voltammetry curves showed that the electrochemical reduction included two steps which were [AuCl4]-→ [AuCl2]-, and [AuCl2]- → Au. Only one reduction peak was observed when the scan rate was comparatively slow and this peak separated into two peaks when the scan rate was increased. This phenomenon resulted from the disproportionation of [AuCl2]- during the electrodeposition process. Chronoamperometry also proved the two step reaction mechanism and the diffusion coefficient of [AuCl4]- was calculated to be 1.3×10-5 cm2·s-1. From the theoretical nucleation curves, an instantaneous three-dimensional nucleation mechanism was proposed for the nucleation of ld on ITO. Au electrodeposits were observed by field emission scanning electron microscopy (FE-SEM). SEM images of the electrodeposits showed that the morphology of the ld deposits was affected by the electrochemical deposition potential and time.

  • 加载中
    1. [1]

      (1) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293.

    2. [2]

      (2) Dai, X.; Compton, R. G. Anal. Sci. 2006, 22, 567.

    3. [3]

      (3) Zhao, M. L.; Ni, D. D.; Wang, J. W.; Di, J. W.; Tu, Y. F. Chin. J. Anal. Chem. 2008, 36, 1729.

    4. [4]

      [赵美莲, 倪丹丹, 王建文, 狄俊伟, 屠一锋. 分析化学, 2008, 36, 1729.]

    5. [5]

      (4) Wang, Y.; Deng, J.; Di, J.; Tu, Y. Electrochem. Commun. 2009, 11, 1034.

    6. [6]

      (5) Chen, Z.; Zu, Y. Langmuir 2007, 23, 11387.

    7. [7]

      (6) Gao, M. X.; Lin, X.M.; Ren, B. Chem. J. Chin. Univ. 2008, 29, 959.

    8. [8]

      [高敏侠,林秀梅,任 斌. 高等学校化学学报, 2008, 29, 959.

    9. [9]

      (7) Zhang, D. F.; Diao, P.; Zhang, Q. J. Phys. Chem. C 2009, 113, 15796.

    10. [10]

      (8) Oyama, T.; Okajima, T.; Ohsaka, T. J. Electrochem. Soc. 2007, 154, 322.

    11. [11]

      (9) Wu, H. H.; Xu, S. K.; Zhou, S. M. Acta Phys. -Chim. Sin. 1985, 1, 357.

    12. [12]

      [吴辉煌, 许书楷, 周绍民. 物理化学学报, 1985, 1, 357.]

    13. [13]

      (10) Abdelmoti, L. G.; Zamborini, F. P. Langmuir 2010, 26, 13511.

    14. [14]

      (11) Huang, X. J.; Yarimaga, O.; Kim, J. H.; Choi, Y. K. J. Mater. Chem. 2009, 19, 478.

    15. [15]

      (12) Mostany, J.; Mozota, J.; Scharifker, B. R. J. Electroanal. Chem. 1984, 177, 13.

    16. [16]

      (13) Scharifker, B. R.; Mozota, J. J. Electroanal. Chem. 1984, 177, 25.

    17. [17]

      (14) Yang, P. X.; An, M. Z.; Su, C. N.; Wang, F. P. Acta Phys. -Chim. Sin. 2008, 24, 203.

    18. [18]

      [杨培霞, 安茂忠,苏彩娜, 王福平. 物理化学学报, 2008, 24, 203.]

    19. [19]

      (15) Zhou. S. M. Principle and Method of Metal Deposition; Shanghai Science and Technology Press:Shanghai,1987; p 197.

    20. [20]

      [周绍民. 金属电沉积—原理与研究方法. 上海:上海科学技术出版社, 1987; p 197.]

    21. [21]

      (16) Ran. M. J. Sichuan Normal. Univ. (Sci. Ed.) 1988, 2, 116.

    22. [22]

      [冉鸣. 四川师范大学学报: 自然科学版, 1988, 2, 116.]

    23. [23]

      (17) Henau, K. D.; Huygens, I.; Strubbe, K. J. Solid State Electrochem. 2010, 14, 83.

    24. [24]

      (18) Depestel, L. M.; Strubbe, K. J. Electroanal. Chem. 2004, 572, 195.

    25. [25]

      (19) Zhu, Y. B.; Shen, Z. C.; Zhang, C. F.; Huang, D. P.; Yu, Z. X.; ng, H. Z. Handbook of Electrochemical Data; Hunan Science and Technology Press: Hunan, 1985; p 221.

    26. [26]

      [朱元保, 沈子琛, 张传福, 黄德培, 虞振新, 龚洪钟. 电化学数据手册, 湖南:湖南科学技术出版社, 1985; p 221.]

    27. [27]

      (20) Schmidt, U.; Donten, M.; Osteryoung, J. G. J. Electrochem. Soc. 1997, 144, 2013.

    28. [28]

      (21) Abyaneh, M. Y.; Fleischmann, M. J. Electroanal. Chem. 1981, 119, 187.

    29. [29]

      (22) Scharifker, B. R. Electrochim. Acta 1983, 28, 897.

    30. [30]

      (23) Martin, H.; Carro, P.; Creus, A. H. n.; lez, S. G.; Salvarezza, R. C.; Arvia, A. J. Langmuir 1997, 13, 100.

    31. [31]

      (24) Boxley, C. J.; White, H. S. J. Phys. Chem. B 2003, 107, 451.


  • 加载中
    1. [1]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    16. [16]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    17. [17]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    18. [18]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

Metrics
  • PDF Downloads(1837)
  • Abstract views(3607)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return