Citation: WANG Yu, YU Gang, CAI Bin, ZHU Yue-Xiang, XIE You-Chang. Delicately Controlled Synthesis of Mesoporous Carbon Materials with Thin Pore Walls[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 729-735. doi: 10.3866/PKU.WHXB20110321 shu

Delicately Controlled Synthesis of Mesoporous Carbon Materials with Thin Pore Walls

  • Received Date: 12 October 2010
    Available Online: 15 February 2011

    Fund Project: 国家自然科学基金(20773004) (20773004)国家重点基础研究发展规划项目(973) (2011CB808702)资助 (973) (2011CB808702)

  • Mesoporous carbon materials with a range of pore sizes were synthesized by a delicately controlled procedure using disordered γ-alumina as template and sucrose as carbon source. Under optimized conditions, the carbon materials had narrow pore size distribution, large surface area (>1000 m2·g-1), large pore volume (up to 3.82 cm3·g-1), high mesopore ratio (>99%), and thin pore walls with thickness of 1-2 graphene layers. In the present work, we employed three types of alumina, and investigated the correlation of their texture with that of the resultant carbon materials. A mechanism for the formation of the carbon materials was proposed and tested against experimental data. A carbon sample prepared by this method can approximately duplicate the pore structure of the template, if the carbon layer in the precursor carbon-covered alumina is complete and sufficiently robust. The mesopores of the carbons had two sources, one from the removal of the template particles and the other from the original pores of the template. Calculated pore volumes strongly support the proposed mechanism.

  • 加载中
    1. [1]

      (1) Han, S. J.; Sohn, K.; Hyeon, T. Chem. Mater. 2000, 12, 3337.

    2. [2]

      (2) Hartmann, M.; Vinu, A.; Chandrasekar, G. Chem. Mater. 2005, 17, 829.

    3. [3]

      (3) Zhuang, X.; Wan, Y.; Feng, C. M.; Shen, Y.; Zhao, D. Y. Chem. Mater. 2009, 21, 706.

    4. [4]

      (4) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169.

    5. [5]

      (5) Nam, J. H.; Jang, Y. Y.; Kwon, Y. U.; Nam, J. D. Electrochem. Commun. 2004, 6, 737.

    6. [6]

      (6) Cui, X. Z.; Shi, J. L.; Zhang, L. X.; Ruan, M. L.; Gao, J. H. Carbon 2009, 47, 186.

    7. [7]

      (7) Li, L. X.; Song, H. H.; Chen, X. H. Electrochim. Acta 2006, 51, 5715.

    8. [8]

      (8) Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2008, 47, 373.

    9. [9]

      (9) Xia, K. S.; Gao, Q. M.; Jiang, J. H.; Hu, J. Carbon 2008, 46, 1718.

    10. [10]

      (10) Numaoa, S.; Judaia, K.; Nishijoa, J.; Mizuuchib, K.; Nishia, N. Carbon 2009, 47, 306.

    11. [11]

      (11) Lu, A. H.; Schüth, F. Adv. Mater. 2006, 18, 1793.

    12. [12]

      (12) Lee, J.; Kim, J.; Hyeon, T. Adv. Mater. 2006, 18, 2073.

    13. [13]

      (13) Liang, C. D.; Li, Z. J.; Dai, S. Angew. Chem. Int. Edit. 2008, 47, 3696.

    14. [14]

      (14) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.

    15. [15]

      (15) Lee, J.; Yoon, S.; Oh, S. M.; Shin, C. H.; Hyeon, T. Adv. Mater. 2000, 12, 359.

    16. [16]

      (16) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.

    17. [17]

      (17) Lu, A. H.; Schmidt, W.; Spliethoff, B.; Schüth, F. Adv. Mater. 2003, 15, 1602.

    18. [18]

      (18) Gierszal, K. P.; Jaroniec, M.; Liang, C. D.; Dai, S. Carbon 2007, 45, 2171.

    19. [19]

      (19) Kyotani, T.; Tsai, L.; Tomita, A. Chem. Mater. 1995, 7, 1427.

    20. [20]

      (20) Parthasarathy, R. V.; Phani, K. L. N.; Martin, C. R. Adv. Mater. 1995, 7, 896.

    21. [21]

      (21) Cott, D. J.; Petkov, N.; Morris, M. A.; Platschek, B.; Bein, T.; Holmes, J. D. J. Am. Chem. Soc. 2006, 128, 3920.

    22. [22]

      (22) Lin, L.; Wang, P.; Wang, S. R.; Zhu, Y. X.; Zhao, B. Y.; Xie, Y. C. Carbon 2006, 44, 3120.

    23. [23]

      (23) Inagaki, M.; Kato, M.; Morishita, T.; Morita, K.; Mizuuchi, K. Carbon 2007, 45, 1121.

    24. [24]

      (24) Zhao, C. R.; Wang, W. K.; Yu, Z. B.; Zhang, H.; Wang, A. B.; Yang, Y. S. J. Mater. Chem. 2010, 20, 976,

    25. [25]

      (25) Xu, B.; Peng, L.; Wang, G. Q.; Cao, G. P.; Wu, F. Carbon 2010, 48, 2377.

    26. [26]

      (26) Ng, Y. H.; Ikeda, S.; Harada, T.; Park, S.; Sakata, T.; Mori, H.; Matsumura, M. Chem. Mater. 2008, 20, 1154.

    27. [27]

      (27) Shi, L. M.; Yao, J. F.; Jiang, J. L.; Zhang, L. X.; Xu, N. P. Microporous Mesoporous Mat. 2009, 122, 294.

    28. [28]

      (28) Morishita, T.; Tsumura, T.; Toyoda, M.; Przepiórski, J.; Morawski, A. W.; Konno, H.; Inagaki, M. Carbon 2010, 48, 2690.

    29. [29]

      (29) Wang, Y.; Lin, L.; Zhu, B. S.; Zhu, Y. X.; Xie, Y. C. Appl. Surf. Sci. 2008, 254, 6560.

    30. [30]

      (30) Groen, J. C.; Peffer, L. A. A.; Pérez-Ramírez, J. Microporous Mesoporous Mat. 2003, 60, 1.

    31. [31]

      (31) Lin, L.; Lin, W.; Zhu, Y. X.; Zhao, B. Y.; Xie, Y. C.; Jia, G. Q.; Li, C. Langmuir 2005, 21, 5040.


  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    19. [19]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(1149)
  • Abstract views(2820)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return