Citation: AN Xiao-Hui, LIU Da-Huan, ZHONG Chong-Li. Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 553-558. doi: 10.3866/PKU.WHXB20110319 shu

Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks

  • Received Date: 15 September 2010
    Available Online: 15 February 2011

    Fund Project: 国家杰出青年科学基金(20725622) (20725622)国家自然科学基金(20876006, 20821004, 20906002)资助项目 (20876006, 20821004, 20906002)

  • Grand canonical Monte Carlo (GCMC) simulations were performed to study the stepped behaviors of carbon dioxide adsorption in the following five isoreticular metal-organic frameworks (IRMOFs): IRMOF-1, -8, -10, -14, -16. The simulation results show that the stepped phenomenon occurs easily when the temperature is low and the pore size is large for these IRMOFs. The critical pressure and temperature where the stepped behavior occurs show a linear relationship with the pore size. The results also further indicate that the electrostatic interaction between CO2 and CO2 molecules plays a dominant role on the stepped behavior. All these findings may provide useful information for the design and modification of MOFs for the adsorption and separation of carbon dioxide in gas mixtures.

  • 加载中
    1. [1]

      (1) Kuang, S. L. Modern Chemical Industry 2008, 28, 3.

    2. [2]

      [邝生鲁. 现代化工, 2008, 28, 3.]

    3. [3]

      (2) Zukal, A.; Dominguez, I.; Mayerová, J.; ?ejka, J. Langmuir 2009, 25, 10314.

    4. [4]

      (3) Xu, X. L.; Zhao, X. X.; Sun, L. B.; Liu, X. Q. J. Nat. Gas Chem. 2008, 17, 391.

    5. [5]

      (4) Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci 2010, 342, 575.

    6. [6]

      (5) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae , H. K.; Eddaoudi , M.; Kim, J. Nature 2003, 423, 705.

    7. [7]

      (6) Dunbar, K. R.; Heintz, R. A. P. Inorg. Chem. 1997, 45, 283.

    8. [8]

      (7) Gramaccioli, C. M. Acta Crystallogr. 1966, 21, 600.

    9. [9]

      (8) Okada, K.; Kay, M. I.; Cromer, D. T.; Almodovar, I. J. Chem. Phys. 1966, 44, 1648.

    10. [10]

      (9) Férey, G. Chem. Soc. Rev. 2008, 37, 191.

    11. [11]

      (10) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.

    12. [12]

      (11) Li, J. R.; Timmons, D. J.; Zhou, H. C. J. Am. Chem. Soc. 2009, 131, 6368.

    13. [13]

      (12) Yu, Q.; Zeng, Y. F.; Zhao, J. P.; Yang, Q.; Bu, X. H. Cryst. Growth Des. 2010, 10, 1878.

    14. [14]

      (13) Liu, Y. L.; Kravtsov, V. C.; Eddaoudi, M. Angew. Chem. 2008, 120, 8574.

    15. [15]

      (14) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Sunrr, R. Q. J. Am. Chem. Soc. 2008, 130, 406.

    16. [16]

      (15) Yang, Q. Y.; Liu, D. H.; Zhong, C. L. J. Chem. Ind. Eng. (China) 2009, 60, 805.

    17. [17]

      [阳庆元, 刘大欢, 仲崇立, 化工学报, 2009, 60, 805.]

    18. [18]

      (16) Yang, Q. Y.; Zhong, C. L.; Chen, J. F. J. Phys. Chem. C 2008, 112, 1562.

    19. [19]

      (17) Accelrys, Inc. Materials Studio, 3.0 V; Accelrys, Inc.: San Die , CA 2003.

    20. [20]

      (18) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.

    21. [21]

      (19) Yang, Q. Y.; Zhong, C. L. Langmuir 2009, 25, 2302.

    22. [22]

      (20) Mayo, S. L.; Olafson, B. D.; ddard III, W. A. J. Phys. Chem. 1990, 94, 8897.

    23. [23]

      (21) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.

    24. [24]

      (22) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2006, 110, 655.

    25. [25]

      (23) Liu, D. H.; Zheng, C. C.; Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. C 2009, 113, 5004.

    26. [26]

      (24) Yang, Q. Y.; Zhong, C. L. ChemPhysChem 2006, 7, 1417.

    27. [27]

      (25) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

    28. [28]

      (26) Xu, Q.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. J. Mater. Chem. 2010, 20, 706.


  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

Metrics
  • PDF Downloads(1402)
  • Abstract views(4412)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return