Citation: AN Xiao-Hui, LIU Da-Huan, ZHONG Chong-Li. Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 553-558. doi: 10.3866/PKU.WHXB20110319 shu

Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks

  • Received Date: 15 September 2010
    Available Online: 15 February 2011

    Fund Project: 国家杰出青年科学基金(20725622) (20725622)国家自然科学基金(20876006, 20821004, 20906002)资助项目 (20876006, 20821004, 20906002)

  • Grand canonical Monte Carlo (GCMC) simulations were performed to study the stepped behaviors of carbon dioxide adsorption in the following five isoreticular metal-organic frameworks (IRMOFs): IRMOF-1, -8, -10, -14, -16. The simulation results show that the stepped phenomenon occurs easily when the temperature is low and the pore size is large for these IRMOFs. The critical pressure and temperature where the stepped behavior occurs show a linear relationship with the pore size. The results also further indicate that the electrostatic interaction between CO2 and CO2 molecules plays a dominant role on the stepped behavior. All these findings may provide useful information for the design and modification of MOFs for the adsorption and separation of carbon dioxide in gas mixtures.

  • 加载中
    1. [1]

      (1) Kuang, S. L. Modern Chemical Industry 2008, 28, 3.

    2. [2]

      [邝生鲁. 现代化工, 2008, 28, 3.]

    3. [3]

      (2) Zukal, A.; Dominguez, I.; Mayerová, J.; ?ejka, J. Langmuir 2009, 25, 10314.

    4. [4]

      (3) Xu, X. L.; Zhao, X. X.; Sun, L. B.; Liu, X. Q. J. Nat. Gas Chem. 2008, 17, 391.

    5. [5]

      (4) Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci 2010, 342, 575.

    6. [6]

      (5) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae , H. K.; Eddaoudi , M.; Kim, J. Nature 2003, 423, 705.

    7. [7]

      (6) Dunbar, K. R.; Heintz, R. A. P. Inorg. Chem. 1997, 45, 283.

    8. [8]

      (7) Gramaccioli, C. M. Acta Crystallogr. 1966, 21, 600.

    9. [9]

      (8) Okada, K.; Kay, M. I.; Cromer, D. T.; Almodovar, I. J. Chem. Phys. 1966, 44, 1648.

    10. [10]

      (9) Férey, G. Chem. Soc. Rev. 2008, 37, 191.

    11. [11]

      (10) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.

    12. [12]

      (11) Li, J. R.; Timmons, D. J.; Zhou, H. C. J. Am. Chem. Soc. 2009, 131, 6368.

    13. [13]

      (12) Yu, Q.; Zeng, Y. F.; Zhao, J. P.; Yang, Q.; Bu, X. H. Cryst. Growth Des. 2010, 10, 1878.

    14. [14]

      (13) Liu, Y. L.; Kravtsov, V. C.; Eddaoudi, M. Angew. Chem. 2008, 120, 8574.

    15. [15]

      (14) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Sunrr, R. Q. J. Am. Chem. Soc. 2008, 130, 406.

    16. [16]

      (15) Yang, Q. Y.; Liu, D. H.; Zhong, C. L. J. Chem. Ind. Eng. (China) 2009, 60, 805.

    17. [17]

      [阳庆元, 刘大欢, 仲崇立, 化工学报, 2009, 60, 805.]

    18. [18]

      (16) Yang, Q. Y.; Zhong, C. L.; Chen, J. F. J. Phys. Chem. C 2008, 112, 1562.

    19. [19]

      (17) Accelrys, Inc. Materials Studio, 3.0 V; Accelrys, Inc.: San Die , CA 2003.

    20. [20]

      (18) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.

    21. [21]

      (19) Yang, Q. Y.; Zhong, C. L. Langmuir 2009, 25, 2302.

    22. [22]

      (20) Mayo, S. L.; Olafson, B. D.; ddard III, W. A. J. Phys. Chem. 1990, 94, 8897.

    23. [23]

      (21) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.

    24. [24]

      (22) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2006, 110, 655.

    25. [25]

      (23) Liu, D. H.; Zheng, C. C.; Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. C 2009, 113, 5004.

    26. [26]

      (24) Yang, Q. Y.; Zhong, C. L. ChemPhysChem 2006, 7, 1417.

    27. [27]

      (25) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

    28. [28]

      (26) Xu, Q.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. J. Mater. Chem. 2010, 20, 706.


  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    10. [10]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(1402)
  • Abstract views(4598)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return