Citation: HAN Ling, NI Ji-Peng, ZHANG Liang-Miao, YUE Bao-Hua, SHEN Shan-Shan, ZHANG Hao, LU Wen-Cong. Controlled Synthesis of Mesoporous MnO2 Nanospindles[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 743-748. doi: 10.3866/PKU.WHXB20110318 shu

Controlled Synthesis of Mesoporous MnO2 Nanospindles

  • Received Date: 27 September 2010
    Available Online: 28 January 2011

    Fund Project: 上海市纳米技术项目(0852nm00700) (0852nm00700)上海大学创新项目(A.10-0101-09-023)资助 (A.10-0101-09-023)

  • We synthesized mesoporous MnO2 nanospindles by a one-step hydrothermal process in an aqueous solution of KMnO4 and glucose. The structure, morphology, purity, and size of the products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and nitrogen adsorption/desorption (BET) measurements. The reaction time and concentrations of glucose influenced the final structures and shapes of the MnO2 nanospindles. The length to diameter ratio of the MnCO3 precursor nanospindles can be easily tuned from 1.35:1 to 2.89:1. A possible formation mechanism for the mesoporous MnO2 nanospindles is proposed and discussed.

  • 加载中
    1. [1]

      (1) Carreon, M. A.; Guliants, V. V. Chem. Mater. 2002, 14, 2670.

    2. [2]

      (2) Schuth, F. Chem. Mater. 2001, 13, 3184.

    3. [3]

      (3) Yang, P. D.; Zhao, D. Y.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.

    4. [4]

      (4) Yang, P. D.; Zhao, D. Y.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 1999, 11, 2813.

    5. [5]

      (5) He, X.; Antonelli, D. Angew. Chem. Int. Edit. 2001, 41, 214.

    6. [6]

      (6) Kresge, C.; Leonowicz, M.; Roth,W.; Vartuli, J.; Beck, J. Nature 1992, 359, 710.

    7. [7]

      (7) Gu, F.; Li, C. Z.;Wang, S. F.; Lu, M. K. Langmuir 2006, 22, 1329.

    8. [8]

      (8) Espinal, L.; Suib, S. L.; Rusling, J. F. J. Am. Chem. Soc. 2004, 126, 7676.

    9. [9]

      (9) Armstrong, A. R.; Bruce, P. G. Nature 1996, 381, 499.

    10. [10]

      (10) Song, X. C.; Zheng, Y. F.; Lin, S.;Wang, Y. Acta Phys.-Chim. Sin. 2007, 23, 258.

    11. [11]

      [宋旭春, 郑遗凡, 林深, 王芸. 物理化学学报, 2007, 23, 258.]

    12. [12]

      (11) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.

    13. [13]

      (12) Toupin, M.; Brousse, T.; Belanger, D. Chem. Mater. 2002, 14, 3946.

    14. [14]

      (13) Wang, T.; Zhou, J. H.;Wang, D. J.; Sun, D.; Di, Z. Y.; He, J. P. Acta Phys-Chim. Sin. 2009, 25, 2155. 

    15. [15]

      [王涛, 周建华, 王道军, 孙盾, 狄志勇, 何建平. 物理化学学报, 2009, 25, 2155.]

    16. [16]

      (14) Wills, A. S.; Raju, N. P.; Greedan, J. E. Chem. Mater. 1999, 11,1510.

    17. [17]

      (15) Segal, S. R.; Park, S. H.; Suib, S. L. Chem. Mater. 1997, 9, 98.

    18. [18]

      (16) Greedan, J. E.; Raju, N. P.;Wills, A. S.; Morin, C.; Shaw, S. M.; Reimers, J. N. Chem. Mater. 1998, 10, 3058.

    19. [19]

      (17) Wang, F.;Wang, Y. M.;Wen, Y. X.; Su, H. F.; Li, B. Acta Phys.-Chim. Sin. 2010, 26, 521.

    20. [20]

      [王凡, 王岩敏, 文衍宣, 粟海峰, 李斌. 物理化学学报, 2010, 26, 521.]

    21. [21]

      (18) Deng, J. G.; Zhang, L.; Dai, H. X.; Xia, Y. S.; Jiang, H. Y.; Zhang, H.; He, H. J. Phys. Chem. C 2010, 114, 2694.

    22. [22]

      (19) Cheng, F. Y.; Zhao, J. Z.; Song,W.; Li, C. S.; Ma, H.; Chen, J.; Shen, P.W. Inorg. Chem. 2006, 45, 2038.

    23. [23]

      (20) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2002, 124, 2880.

    24. [24]

      (21) Wang, X.; Li, Y. D. Chem-Eur. J. 2003, 9, 300.

    25. [25]

      (22) Xiong, Y. J.; Xie, Y.; Li, Z. Q.;Wu, C. Z. Chem-Eur. J. 2003, 9, 1645.

    26. [26]

      (23) Wei, M.; Konishi, Y.; Zhou, H.; Sugihara, H.; Arakawa, H. Nanotechnology 2005, 16, 245.

    27. [27]

      (24) Yuan, Z. Y.; Ren, T. Z.; Du, G. H.; Su, B. L. Appl. Phys. A-Mater.2005, 80, 743.

    28. [28]

      (25) Song, X. C.; Zhao, Y.; Zheng, Y. F. Cryst. Growth. Des. 2007, 7, 159.

    29. [29]

      (26) Xiong, Y. J.; Xie, Y.; Li, X. X.; Li, Z. Q. Carbon 2004, 42, 1447.

    30. [30]

      (27) Wong,W. K.; Li, C. P.; Au, F. C. K.; Fung, M. K.; Sun, X. H.; Lee, C. S.; Lee, S. T.; Zhu,W. J. Phys. Chem. B 2003, 107, 1514.

    31. [31]

      (28) Chowdhury, A. K. M. S.;Cameron, D. C.;Hashmi, M. S. J. Thin Solid Films 1998, 332, 62.

    32. [32]

      (29) Ho, C. M.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Y. Chem. Mater. 2005, 17, 4514.

    33. [33]

      (30) Ananth, M. V.; Pethkar, S.; Dakshinamurthi, K. J. Power Sources 1998, 75, 278.

    34. [34]

      (31) Liu, Z. H.; Yang, X. J.; Makita, Y.; Ooi, K. Chem. Mater. 2002, 14, 4800.

    35. [35]

      (32) Wang, X. L.; Yuan, A. B.;Wang, Y. Q. J. Power Sources 2007, 172, 1007.


  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    3. [3]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    6. [6]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    7. [7]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    10. [10]

      Kun ChenHuimin LinXin PengZiying WuJingyue DaiYi SunYaxuan FengZiyi HuangZhiqiang YuMeng YuGuangyu YaoJigang WangIn situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045

    11. [11]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    16. [16]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

Metrics
  • PDF Downloads(1375)
  • Abstract views(2771)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return