Citation: XU Ning, KONG Fan-Jie, WANG Yan-Zong. Electronic Transport in Z-Shaped Graphene-Nanoribbons: Shape and Size Effects[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 559-563. doi: 10.3866/PKU.WHXB20110305 shu

Electronic Transport in Z-Shaped Graphene-Nanoribbons: Shape and Size Effects

  • Received Date: 12 October 2010
    Available Online: 21 January 2011

    Fund Project: 国家自然科学基金(10874052) (10874052)全国优秀博士学位论文基金(200726)资助项目 (200726)

  • Based on the Green′s function method and the Landauer-Büttiker formula, we studied the electronic transport properties of a graphene heterojunction. This was a Z-shaped graphene nanoribbon (GNR), which was connected by zigzag graphene nanoribbon leads. We show that the conductance of the Z-shaped GNRs is highly sensitive to the shape and size of the heterojunctions. The charge density is strongly localized on the zigzag edge sites of the leads and thereby a conductance dip or gap results at the Fermi energy. By varying the width of the graphene ribbons between the junctions, we found many more resonant peaks in the conduction because of the quasi-bound states. The number of resonant peaks has little to do with the length of the graphene ribbons between the junctions. Importantly, we show that in the low-energy region the electrons retain their ballistic transport characteristic in the width uniformity of Z-shaped GNRs with included angle θ of 60° or 150° turns. These findings show that the Z-shaped GNRs can be selected for future ballistic device applications.

  • 加载中
    1. [1]

      (1) Hiura, H. Appl. Surf. Sci. 2004, 222, 374.

    2. [2]

      (2) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.

    3. [3]

      (3) Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191.

    4. [4]

      (4) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108, 19912.

    5. [5]

      (5) Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 1996, 54, 17954.

    6. [6]

      (6) Ezawa, M. Phys. Rev. B 2006, 73, 045432.

    7. [7]

      (7) Brey, L.; Fertig, H. A. Phys. Rev. B 2006, 73, 195408.

    8. [8]

      (8) Li, T. C.; Lu, S. P. Phys. Rev. B 2008, 77, 085408.

    9. [9]

      (9) Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novolevov, K. S.; Geim, A. K. Science 2008, 320, 356.

    10. [10]

      (10) Schnez, S.; Molitor, F.; Stampfer, C.; Guttinger, J.; Shorubalko, I.; Ihn, T.; Ensslin, K. Appl. Phys. Lett. 2009, 94, 012107.

    11. [11]

      (11) Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A. Phys. Rev. B 2009, 79, 125414.

    12. [12]

      (12) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.

    13. [13]

      (13) Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H. Eur. Phys. J. Spec. Top. 2007, 148, 19.

    14. [14]

      (14) Russo, S.; Oostinga, J. B.; Wehenkel, D.; Heersche, H.; Sobhani, S. S.; Vandersypen, L. M. K.; Morpur , A. F. Phys. Rev. B 2008, 77, 085413.

    15. [15]

      (15) Recher, P.; Trauzettel, B.; Rycerz, A.; Blanter, Y. M.; Beenakker, C. W. J.; Morpur , A. F. Phys. Rev. B 2007, 76, 235404.

    16. [16]

      (16) Shen, T.; Wu, Y. Q.; Capano, M. A.; Robickinson, L. P.; Engel, L. W.; Ye, P. D. Appl. Phys. Lett. 2008, 93, 122102.

    17. [17]

      (17) Xu, N.; Wang, B. L.; Sun, H. Q.; Ding, J. W. Chin. Phys. Lett. 2010, 27, 107303.

    18. [18]

      [徐 宁, 王保林, 孙厚谦, 丁建文. 物理快报, 2010, 27, 107303.]

    19. [19]

      (18) Xu, N.; Wang, B. L.; Sun, H. Q.; Kong, F. J. Physica B in press, DOI:10.1016/j.physb.2010.11.065.

    20. [20]

      (19) Areshkin, D. A.; White, C. T. Nano Lett. 2007, 7, 3253.

    21. [21]

      (20) Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, England, 1997.

    22. [22]

      (21) Xu, N.; Ding, J. W.; Xing, D. Y. J. Appl. Phys. 2008, 103, 083710.

    23. [23]

      (22) Xu, N.; Ding, J. W. J. Phys.: Condens. Matter 2008, 48, 485213.

    24. [24]

      (23) Xu, N.; Wang, B. L.; Sun, H. Q.; Kong, F. J. Chin. Phys. B 2010, 19, 117201.

    25. [25]

      [徐 宁, 王保林, 孙厚谦, 孔凡杰. 中国物理B, 2010, 19, 117201.]

    26. [26]

      (24) Rosales, L.; Pacheco, M.; Barticevic, Z.; latgé, A.; Orellana, P. A. Nanotechnology 2008, 19, 065402.

    27. [27]

      (25) Areshkin, D. A.; Gunlycke, D.; White, C. T. white Nano Lett. 2007, 7, 204.


  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    3. [3]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    12. [12]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    18. [18]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(1528)
  • Abstract views(2762)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return