Citation: LAO Guo-Hong, SHAO Hai-Bo, FAN Yu-Qian, WANG Jian-Ming, ZHANG Jian-Qing, CAO Chu-Nan. Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 627-632. doi: 10.3866/PKU.WHXB20110240 shu

Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode

  • Received Date: 13 October 2010
    Available Online: 17 January 2011

    Fund Project: 浙江省自然科学基金(Y406192) (Y406192)高等学校博士学科点专项科研基金(20070335157)资助项目 (20070335157)

  • Spherular-Co3O4 particles were synthesized on graphite electrode surface by ammonia-evaporation-induction. Its electrooxidation catalytic behavior for sulfide ions in an alkaline solution was investigated by electrochemical measurements such as potentiodynamic scanning and potentiostatic polarization. We found that high catalytic activity and the highest current density of 580 mA·cm-2 were obtained at -0.40 V. In addition, its catalytic performance was stable during potentiostatic polarization. Electrochemical impedance spectroscopy (EIS) indicated a low charge transfer resistance, which explained the high catalytic activity from the viewpoint of electrochemical kinetics.

  • 加载中
    1. [1]

      (1) Wang, C. B.; Tang, C. W.; Gau, S. J. Catal. Lett. 2005, 101, 59.

    2. [2]

      (2) Wang, G. X.; Chen, Y.; Konstantinov, K. J. Alloy. Compd. 2002, 340, L5.

    3. [3]

      (3) Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.

    4. [4]

      (4) Plamas, S.; Ferrara, F.; Vacca, A.; Mascia, M.; Polcaro, A. M. Electrochim. Acta 2007, 53, 401.

    5. [5]

      (5) Cao, D.; Chao, J.; Sun, L.; Wang, G. J. Power Sources 2008, 179, 88.

    6. [6]

      (6) Petrov, K.; Srinivasan, S. Int. J. Hydrog. Energy 1996, 21, 163.

    7. [7]

      (7) Kalina, D. W.; Maas, E. T. Int. J. Hydrog. Energy 1985, 10, 157.

    8. [8]

      (8) Kalina, D. W.; Maas, E.T. Int. J. Hydrog. Energy 1985, 10, 163.

    9. [9]

      (9) Szynkarczuk, J.; Komorowski, R. G.; Donini, J. C. Electrochim. Acta 1994, 39, 2285.

    10. [10]

      (10) Szynkarczuk, J.; Komorowski, R. G.; Donini, J. C. Electrochim. Acta 1995, 40, 487.

    11. [11]

      (11) Shih, Y.; Lee, J. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 834.

    12. [12]

      (12) Weast, R. C.; Astle, M. J.; Beyer, W. H. Handbook of Physics and Chemistry; CRC Press: Cleveland, 1982; pp 65-68.

    13. [13]

      (13) Annni, A. A.; Mao, Z.; White, R. E.; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1990, 137, 2703.

    14. [14]

      (14) Mao, Z.; Annni, A. A.; White, R. E; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1991, 138, 1300.

    15. [15]

      (15) Long, H. Z. Mining and Metal Eng. 2003, 23, 47

    16. [16]

      [龙怀中. 矿冶工程, 2003, 23, 47.]

    17. [17]

      (16) Yi, Q. F. Acta Phys. -Chim. Sin. 2000, 16: 263

    18. [18]

      [易清风. 物理化学学报, 2000, 16, 263.]

    19. [19]

      (17) Li, Y. G.; Tan, B.; Wu, Y. Y. Nano. Lett. 2008, 179, 87.

    20. [20]

      (18) Li, Y. G.; Tan, B.; Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.

    21. [21]

      (19) Tian, Z. W. Electrochemical Methods; Science Press: Beijing, 1984; pp 131-133.

    22. [22]

      [田昭武. 电化学研究方法. 北京: 科学出版社, 1984: 131-133.]

    23. [23]

      (20) Zhang, J. Q. Electrochemical Measurement Technolog; Chemical Industry Press: Beijing, 2010; pp 84-87

    24. [24]

      [张鉴清. 电化学测试方法. 北京: 化学工业出版社, 2010: 84-87.]

    25. [25]

      (21) Barbero, C.; Planes, G.A. Miras, M.C. Electrochem.Commun. 2001, 3, 114.

    26. [26]

      (22) Casella, I. G.; Gatta, M. J. Electroanal. Chem. 2002, 534, 32.

    27. [27]

      (23) Cao, C. N.; Zhang, J. Q. An Introduction to Electrochemical Impedance Spectroscopy; Science Press: Beijing, 2002; pp 128-141.

    28. [28]

      [曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 128-141.]

    29. [29]

      (24) Van Der Weide, D. H.; Van Westing, E. P. M. Corrosion Sci. 1994, 36, 644.

    30. [30]

      (25) Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1200.


  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    3. [3]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    9. [9]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    10. [10]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

Metrics
  • PDF Downloads(1193)
  • Abstract views(2582)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return