Citation: SUN Xiu-Xin, LIU Yan, ZHAO Hai-Bo, SUN Shi-Ling, LIU Chun-Guang, QIU Yong-Qing. Electronic Structures and Nonlinear Optical Properties of Pyridine- Based Ru(II) Complexes Containing Thiophene Rings[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 315-321. doi: 10.3866/PKU.WHXB20110236 shu

Electronic Structures and Nonlinear Optical Properties of Pyridine- Based Ru(II) Complexes Containing Thiophene Rings

  • Received Date: 20 September 2010
    Available Online: 12 January 2011

    Fund Project: 国家自然科学基金(20873017) (20873017)吉林省自然科学基金(20101154)资助项目 (20101154)

  • Density functional theory (DFT) with the B3LYP functional was used to investigate the electronic structures and nonlinear optical (NLO) properties of a series of pyridine-based Ru(II) complexes containing thiophene rings. The results indicate that stable chemical bonds do not form between the coordinated atoms and the metal ion for [RuII(NH3)5L]2+ (L: organic groups containing the thiophene ring) complexes. However, strong donor-acceptor (D-A) interactions do exist. The Ru(II) and carbon atoms form stable σ-π coordinated bonds after NH3 is substituted by CO, which decreases the unoccupied orbital energies of the acceptor groups. The degree of system conjugation increases because of an increase in the number of thiophene rings, which is favorable for intramolecule charge transfer. The polarizability α and the first-order hyperpolarizability β values of all the systems are enhanced significantly because of the abovementioned reasons. According to the frontier molecular orbitals, the contribution to the second-order NLO coefficient mainly comes from an intraligand charge transfer (ILCT) and an interligand charge transfer (LLCT). The introduction of CO increases the β value for the [RuII(CO)5L]2+ complex about seven times compared with the [RuII(NH3)5L]2+ analogue, which can be attributed to a ligand-to-metal charge transfer (LMCT).

  • 加载中
    1. [1]

      (1) Di Bella, S. Chem. Soc. Rev. 2001, 30, 355.

    2. [2]

      (2) Qiu, Y. Q.; Liu, C. G.; Chen, H.; Su, Z. M.; Yang, G. C.; Wang, R. S. Acta Phys. -Chim. Sin. 2006, 22, 836.

    3. [3]

      [仇永清, 刘春光, 陈 徽, 苏忠民, 杨国春, 王荣顺. 物理化学学报, 2006, 22, 836.]

    4. [4]

      (3) Garreau-de Bonneval, B.; Ching, K. I. M. C.; Alary, F.; Bui, T. T.; Valade, L. Coord. Chem. Rev. 2010, 254, 1457.

    5. [5]

      (4) Liu, X. D.; Qiu, Y. Q.; Chen, H.; Li, N.; Sun, S. L.; Su, Z. M. Sci. China Ser. B-Chem. 2009, 52, 144.

    6. [6]

      [刘晓东, 仇永清, 陈 徽, 李 娜, 孙世玲, 苏忠民. 中国科学B辑: 化学, 2009, 52, 144.]

    7. [7]

      (5) Powell, C. E.; Cifuentes, M. P.; Morrall, J. P.; Stranger, R.; Humphrey, M. G.; Samoc, M.; Luther-Davies, B.; Heath, G. A. J. Am. Chem. Soc. 2003, 125, 602.

    8. [8]

      (6) Zhao, H. B.; Sun, S. L.; Qiu, Y. Q.; Liu, C. G.; Su, Z. M. Int. J. Quantum Chem. 2010, 110, 1863.

    9. [9]

      (7) Liu, C. G.; Guan, W.; Song, P.; Yan, L. K.; Su, Z. M. Inorg. Chem. 2009, 48, 6548.

    10. [10]

      (8) Liu, C. G.; Qiu, Y. Q.; Sun, S. L.; Li, N.; Yang, G. C.; Su, Z. M. Chem. Phys. Lett. 2007, 443, 163.

    11. [11]

      (9) Margeat, O.; Lacroix, P. G.; Costes, J. P.; Donnadieu, B.; Lepetit, C. Inorg. Chem. 2004, 43, 4743.

    12. [12]

      (10) Lacroix, P. G. Eur. J. Inorg. Chem. 2001, 2, 339.

    13. [13]

      (11) Dumur, F.; Mayer, C. R.; Hoang-Thi, K.; Ledoux-Rak, I.; Miomandre, F.; Clavier, G.; Dumas, E.; Méallet-Renault, R.; Fri li, M.; Zyss, J.; Sécheresse, F. Inorg. Chem. 2009, 48, 8120.

    14. [14]

      (12) Sun, Y. J.; Turro, C. Inorg. Chem. 2010, 49, 5025.

    15. [15]

      (13) (a) Coe, B. J.; Foxon, S. P.; Harper, E. C.; Helliwell, M.; Raftery, J.; Swanson, C. A.; Brunschwig, B. S.; Clays, K.; Franz, E.; Garín, J.; Orduna, J.; Horton, P. N.; Hursthouse, M. B. J. Am. Chem. Soc. 2010, 132, 1706. (b) Coe, B. J. Acc. Chem. Res. 2006, 39, 383.

    16. [16]

      (14) Spiekermann, S.; Smestad, G.; Kowalik, J.; Kowalik, J.; Tolbert, L. M.; Grätzel, M. Synth. Met. 2001, 121, 1603.

    17. [17]

      (15) Jen, A. K.-Y.; Rao, V. P.; Wong, K. Y.; Drost, K. J. J. Chem. Soc. Chem. Commun. 1993, No. 1, 90.

    18. [18]

      (16) Lee, I. S.; Choi, D. S.; Shin, D. M.; Chung, Y. K.; Choi, C. H. Organometallics 2004, 23, 1875.

    19. [19]

      (17) Liao, Y.; Eichinger, B. E.; Firestone, K. A.; Haller, M.; Luo, J. D.; Kaminsky, W.; Benedict, J. B.; Reid, P. J.; Jen, A. K. Y.; Dalton, L. R.; Robinson, B. H. J. Am. Chem. Soc. 2005, 127, 2758.

    20. [20]

      (18) Garcia, M. H.; Mendes, P. J.; Paula Robalo, M.; Teresa Duarte, M.; Lopes, N. J. Organomet. Chem. 2009, 694, 2888.

    21. [21]

      (19) Herbivo, C.; Comel, A.; Kirsch, G., Raposo, M. M. M. Tetrahedron 2009, 65, 2079.

    22. [22]

      (20) (a) Hohenberg, P. C.; Kohn, W. Phys. Rev. B 1964, 136, 864. (b) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.

    23. [23]

      (21) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    24. [24]

      (22) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.

    25. [25]

      (23) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

    26. [26]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, 2004.

    27. [27]

      (25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.

    28. [28]

      (26) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.

    29. [29]

      (27) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.

    30. [30]

      (28) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

    31. [31]

      (29) Carpenter, J. E.; Weinhold, F. J. Mol. Struct.-Theothem 1988, 169, 41.

    32. [32]

      (30) Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 610.

    33. [33]

      (31) (a) Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Garín, J.; Orduna, J.; Coles, S. J.; Hursthouse, M. B. J. Am. Chem. Soc. 2004, 126, 10418. (b) Coe, B. J.; Harries, J. L.; Helliwell, M.; Brunschwig, B. S.; Harris, J. A.; Asselberghs, I.; Hung, S. T.; Clays, K.; Horton, P. N.; Hursthouse, M. B. Inorg. Chem. 2006, 45, 1215.

    34. [34]

      (32) Breitung, E. M.; Shu, C. F.; McMahon, R. J. J. Am. Chem. Soc. 2000, 122, 1154.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    11. [11]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    15. [15]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    16. [16]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    17. [17]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(1160)
  • Abstract views(3280)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return