Citation: GAO Rui, MA Bei-Bei, WANG Li-Duo, SHI Yan-Tao, DONG Hao-Peng, QIU Yong. Photovoltaic Properties and Mechanism Analysis of a Dye/Al2O3 Alternating Assembly Structure by Electrochemical Impedance Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 413-418. doi: 10.3866/PKU.WHXB20110234 shu

Photovoltaic Properties and Mechanism Analysis of a Dye/Al2O3 Alternating Assembly Structure by Electrochemical Impedance Spectroscopy

  • Received Date: 12 October 2010
    Available Online: 10 January 2011

    Fund Project: 国家自然科学基金(50873055) (50873055)国家重点基础研究发展规划项目(973) (2009CB930602)资助 (973) (2009CB930602)

  • N3 dye and Al2O3 were used to form an alternating assembly structure. The current density-voltage (J-V) characterization showed that this structure improved the performance of dye- sensitized solar cells (DSCs). Electrochemical impedance spectroscopy (EIS) was used to study the internal resistance of this alternating assembly structured DSCs. The results showed that the resistance at the sensitized TiO2/electrolyte interface decreased as the number of (dye/Al2O3) units increased, and the device's conversion efficiency improved significantly. Based on the EIS results, a series of equivalent circuit models were well established to investigate the dye/Al2O3 alternating assembly structure theoretically.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.

    2. [2]

      (2) Kuang, D. B.; Klein, C.; Ito, S.; Moser, J.; Baker, R.; Zakeeruddin, S.; Grätzel, M. Adv. Funct. Mater. 2007, 17, 154.

    3. [3]

      (3) Hu, L. H.; Dai, S. Y.; Weng, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.; Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L.Y.; Wang, K. J. J. Phys. Chem. B 2007, 111, 358.

    4. [4]

      (4) Hara, K.; Sugihara, H.; Tachibana, Y.; Islam, A.; Yanagida, M.; Sayama, K.; Arakawa, H. Langmuir 2001, 17, 5992.

    5. [5]

      (5) Jung, H. S.; Lee, J. K.; Nastasi, M.; Lee, S. W.; Kim, J. Y.; Park, J. S.; Hong, K. S. Langmuir 2005, 21, 10332.

    6. [6]

      (6) Nakade, S. ; Kanzaki, T. ; Kambe, S.; Wada, Y.; Yanagida, S. Langmuir 2005, 21, 11414.

    7. [7]

      (7) Sommeling, P. M.; Späth, M.; Smit, H. J. P.; Bakker, N. J.; Kroon, J. M. J. Photochem. Photobio. A: Chem. 2004, 164, 137.

    8. [8]

      (8) Grätzel, M. C. R. Chimie 2006, 9, 578.

    9. [9]

      (9) Figgemeier, E.; Hagfeldt, A. Int. J. Photoenergy 2004, 6, 127.

    10. [10]

      (10) Meng, Q. B.; Takahashi, K.; Zhang, X. T.; Sutanto, I.; Rao, T. N.; Sato, O.; Fujishima, A. Langmuir 2003, 19, 3572.

    11. [11]

      (11) Sathiya Priya, A. R.; Subramania, A.; Jung, Y. S.; Kim, K. J. Langmuir 2008, 24, 9816.

    12. [12]

      (12) Grätzel, M. J. Photochem. Photobio. A. Chem. 2004, 164, 3.

    13. [13]

      (13) Kay, A.; Baker, R. H.; Grätzel, M. J. Phys. Chem. 1994, 98, 952.

    14. [14]

      (14) Grätzel, M. Curr. Opin. Coll. Int. Sci. 1999, 4, 314.

    15. [15]

      (15) Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Grätzel, M. Chem. Commun. 2003, No. 12, 1456.

    16. [16]

      (16) Nelson, R. C. J. Phys. Chem. 1965, 69, 714.

    17. [17]

      (17) Fang, J. H.; Mao, H. F.; Wu, J. W.; Zhang, X. Y.; Lu, Z. H. Appl. Surf. Sci. 1997, 119, 237.

    18. [18]

      (18) Perera, V.; Pitigala, P.; Jayaweera, P.; Bandaranayake, K.; Tennakone, K. J. Phys. Chem. B 2003, 107, 13758.

    19. [19]

      (19) Fang, J. H.; Su, L. Y.; Wu, J. W.; Shen, Y. C.; Lu, Z. H. New J. Chem. 1997, 21, 1303.

    20. [20]

      (20) Cid, J.; Yum, J.; Jang, S.; Nazeeruddin, M. K.; Ferrero, E. M.; Palomares, E.; Ko, J.; Grätzel, M.; Torres, T. Angew. Chem. Int. Edit. 2007, 46, 8358

    21. [21]

      (21) Liu, B. Q.; Zhao, X. P.; Luo, W. Dyes and Pigments 2008, 76, 327.

    22. [22]

      (22) Kuang, D. B.; Walter, P.; Nüesch, F.; Kim, S.; Ko, J.; Comte, P.; Zakeeruddin, S. M.; Grätzel, M. Langmuir 2007, 23, 10906.

    23. [23]

      (23) Liu, Z. Y.; Pan, K.; Liu, M.; Wang, M. J.; Lu, Q.; Li, J. H.; Bai, Y. B.; Li, T. J. Electrochim. Acta 2005, 50, 2583.

    24. [24]

      (24) Zhang, X. Y.; Sutanto, I.; Taguchi, T.; Tokuhiro, K.; Meng, Q. B.; Rao, T. N.; Fujishima, A.; Watanabe, H.; Nakamori, T.; Uragami, M. Sol. Energy Mater. Sol. Cells 2003, 80, 315.

    25. [25]

      (25) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Thampi, R.; Grätzel, M.; Durrant, J. R. J. Am. Chem. Soc. 2004, 126, 5670.

    26. [26]

      (26) Choi, H.; Kim, S.; Kang, S. O.; Ko, J.; Kang, M. S.; Clifford, J. N.; Forneli, A.; Palomares, E.; Nazeeruddin, K.; Grätzel, M. Angew. Chem. Int. Edit. 2008, 120, 8383.

    27. [27]

      (27) Ma, B. B.; Gao, R.; Wang, L. D.; Luo, F.; Zhan, C.; Li, J. L.; Qiu, Y. J. Photochem. Photobio. A: Chem. 2009, 202, 33

    28. [28]

      (28) Luo, F.; Wang, L. D.; Ma, B. B.; Qiu, Y. J. Photochem. Photobio. A: Chem. 2008, 197, 375.

    29. [29]

      (29) van de. Lagemaat, J.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.

    30. [30]

      (30) Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santia , F.; Ferriols, N. S.; Bogdanoff, P.; Pereira, E. C. J. Phys. Chem. B 2000, 104, 2287.

    31. [31]

      (31) Koide, N.; Islam, A.; Chiba, Y.; Han, L.Y. J. Photochem. Photobio. A: Chem. 2006, 182, 296.

    32. [32]

      (32) Kang, T. S.; Chun, K. H.; Hong, J. S.; Moon, S. H.; Kim, K. J. J. Electrochem. Soc. 2000, 147, 3049.

    33. [33]

      (33) Kern, R.; Sastrawan, R.; Ferber, J. ; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213.


  • 加载中
    1. [1]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    2. [2]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    5. [5]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    7. [7]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    10. [10]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    11. [11]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    12. [12]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    19. [19]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(1269)
  • Abstract views(3193)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return