Citation: LIU Yan, WANG Fang-Fang, YU Chun-Yang, LIU Cui,  ng Li-Dong, YANG Zhong-Zhi. Structures and Binding Energies of Sr2+/Ba2+-Water Systems by Ab initio and ABEEM/MM Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 379-387. doi: 10.3866/PKU.WHXB20110233 shu

Structures and Binding Energies of Sr2+/Ba2+-Water Systems by Ab initio and ABEEM/MM Method

  • Received Date: 7 October 2010
    Available Online: 10 January 2011

    Fund Project: 国家自然科学基金(20633050, 20703022, 21011120087) (20633050, 20703022, 21011120087)辽宁省教育厅基金(2009T057)资助项目 (2009T057)

  • Hydrated clusters of Sr2+/Ba2+(H2O)n (n=1-6) were investigated by the ab initio method and the ABEEM/MM fluctuating charge molecular force field. ABEEM/MM potential functions of cation-water interactions were constructed based on the stable structures and binding energies of the hydrated clusters were obtained. The results from ABEEM/MM are consistent with those from the ab initio method. Furthermore, Sr2+ and Ba2+ aqueous solutions were studied by ABEEM/MM molecular dynamic simulations. Results show that for the Sr2+ aqueous solution the first and second peaks of the SrO radial distribution function (RDF) are located at 0.257 and 0.464 nm, respectively. The coordination numbers of the water molecules for the first and second hydration shells are 9.2 and 11.4, respectively. For the Ba2+ aqueous solution, the first and second peaks of the BaO RDF are located at 0.269 and 0.467 nm, respectively. The coordination numbers of water molecules for the first and second hydration shells are 9.9 and 12.4, respectively. These results also show od consistency with experimental observations and other theoretical simulations. Compared with the external water molecules, the water molecules in the first hydration shell are evidently polarized by the cation and their O―H bond lengths are stretched while the HOH bond angles are found to be reduced.

  • 加载中
    1. [1]

      (1) Shimamura, T.; Weyand, S.; Beckstein, O.; Rutherford, N. G.; Hadden, J. M.; Sharples, D.; Sansom, M. S. P.; Iwata, S.; Henderson, P. J. F.; Cameron A. D. Science 2010, 328, 470.

    2. [2]

      (2) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157.

    3. [3]

      (3) Richens, D. T. The Chemistry of Aqua Ions; John Wiley & Sons: New York, 1997.

    4. [4]

      (4) Vinogradov, E. V.; Smirnov, P. R.; Trostin, V. N. Russ. Chem. Bull. 2003, 52, 1.

    5. [5]

      (5) Liang, X. Y.; Campopiano, D. J.; Sadler, P. J. Chem. Soc. Rev. 2007, 36, 968.

    6. [6]

      (6) Marcus, Y. Chem. Rev. 2009, 109, 1346.

    7. [7]

      (7) Kankia, B. I.; Marky, L. A. J. Am. Chem. Soc. 2001, 123, 10799.

    8. [8]

      (8) Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J. J. Phys. Chem. B 2009, 113, 10552.

    9. [9]

      (9) Shao, H. B.; Wang, X. Y.; Wang, J. M.; Wang, J. B.; Zhang, J. Q.; Cao, C. N. Acta Phys. -Chim. Sin. 2006, 22, 312.

    10. [10]

      [邵海波, 王晓艳, 王建明, 王俊波, 张鉴清, 曹楚南. 物理化学学报, 2006, 22, 312.]

    11. [11]

      (10) Rode, B. M.; Hofer, T. S. Pure Appl. Chem, 2006, 78, 525.

    12. [12]

      (11) Masia, M. J. Chem. Phys. 2008, 128, 184107.

    13. [13]

      (12) Jorgenson, W. L. J. Chem. Theory Comput. 2007, 3, 1877.

    14. [14]

      (13) Wang, Z. X.; Zhang, W.; Wu, C.; Lei, H.; Cieplak, P.; Duan, Y. J. Comput. Chem. 2006, 27, 781.

    15. [15]

      (14) Lamureux, G.; Roux, B. J. Chem. Phys. 2003, 119, 3025.

    16. [16]

      (15) Xie, W.; Pu, J.; MacKerell, A. D., Jr.; Gao, J. L. J. Chem. Theory Comput. 2007, 3, 1878.

    17. [17]

      (16) Jorgenson, W. L.; Jensen, K. P.; Alexandrova, A. N. J. Chem. Theory Comput. 2007, 3, 1987.

    18. [18]

      (17) Schnieders, M. J.; Ponder, J. W. J. Chem. Theory Comput. 2007, 3, 2083.

    19. [19]

      (18) Holt, A.; Karlström, G. J. Comput. Chem. 2008, 29, 1084.

    20. [20]

      (19) Holt, A.; Karlström, G. J. Comput. Chem. 2008, 29, 2033.

    21. [21]

      (20) Anisimov, V. M.; Vorobyov, I. V.; Roux, B.; MacKerell, A. D., Jr. J. Chem. Theory Comput. 2007, 3, 1927.

    22. [22]

      (21) Banks, J. L.; Kaminski, G. A.; Zhou, R.; Mainz, D. T.; Berne, B. J.; Friesner, R. A. J. Chem. Phys. 1999, 110, 741.

    23. [23]

      (22) Chelli, R.; Procacci, P. J. Chem. Phys. 2002, 117, 9175.

    24. [24]

      (23) Patel, S.; Brooks, C. L., III. J. Comput. Chem. 2004, 25, 1.

    25. [25]

      (24) Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys. 2004, 120, 2541.

    26. [26]

      (25) Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315.

    27. [27]

      (26) York, D. M.; Yang, W. T. J. Chem. Phys. 1996, 104, 159.

    28. [28]

      (27) Lopes, P. E. M.; MacKerell, A. D., Jr.; Roux, B. Theor. Chem. Acc. 2009, 124, 11.

    29. [29]

      (28) Grossfield, A.; Ren, P. Y.; Ponder, J. W. J. Am. Chem. Soc. 2003, 125, 15671.

    30. [30]

      (29) Lamoureux, G.; Roux, B. J. Phys. Chem. B 2006, 110, 3308.

    31. [31]

      (30) Warren, G. L.; Patel, S. J. Phys. Chem. B 2008, 112, 11679.

    32. [32]

      (31) Masia, M.; Probst, M. J. Chem. Phys. 2005, 123, 164505.

    33. [33]

      (32) Piquemal, J. P.; Perera, L.; Cisneros, G. A.; Ren, P. Y.; Pedersen, L. G.; Darden, T. A. J. Chem. Phys. 2006, 125, 054511.

    34. [34]

      (33) Jungwirth, P.; Tobias, T. J. Chem. Rev. 2006, 106, 159.

    35. [35]

      (34) D′Angleo, P.; Pavel, N. V.; Roccatano, D. Phys. Rev. B 1996, 54, 12129.

    36. [36]

      (35) Persson, I.; Sandstr?m, M.; Yokoyama, H.; Chaudhry, M. Z. Naturforsch. A 1995, 50, 21.

    37. [37]

      (36) Hofer, T. S.; Rode, B. M.; Randolf, B. R. Chem. Phys. 2005, 312, 81.

    38. [38]

      (37) Han, Y. K.; Jeong, Y. K. J. Phys. Chem. 1996, 100, 18004.

    39. [39]

      (38) Peschke, M.; Blades, A. T.; Kebarle, P. J. Phys. Chem. A 1998, 102, 9978.

    40. [40]

      (39) Rodriguez-Cruz, S. E.; Jockusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1999, 121, 8898.

    41. [41]

      (40) Harris, D. J.; Brodholt, J. P.; Sherman, D. M. J. Phys. Chem. B 2003, 107, 9056.

    42. [42]

      (41) Yang, Z. Z.; Wang, C. S. J. Phys. Chem. A 1997, 101, 6315.

    43. [43]

      (42) Wang, C. S.; Yang, Z. Z. J. Chem. Phys. 1999, 110, 6189.

    44. [44]

      (43) Wu, Y.; Yang, Z. Z. J. Phys. Chem. A 2004, 108, 7563.

    45. [45]

      (44) Yang, Z. Z.; Ye, Y. J.; Tang, A. Q. Quantum Chemistry of Macromolecular Systems, 2nd ed.; Jilin University Press: Changchun, 2005; pp 215-294.

    46. [46]

      [杨忠志, 叶元杰, 唐敖庆. 大分子体系的量子化学(第二版). 长春: 吉林大学出版社, 2005: 215-294.]

    47. [47]

      (45) Yang, Z. Z.; Li, X. J. Phys. Chem. A 2005, 109, 3517.

    48. [48]

      (46) Li, X.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 4102.

    49. [49]

      (47) Li, X.; Yang, Z. Z. J. Chem. Phys. 2005, 122, 084514.

    50. [50]

      (48) Yang, Z. Z.; Li, X. J. Chem. Phys. 2005, 123, 094507.

    51. [51]

      (49) Yang, Z. Z.; Zhang, Q. J. Comput. Chem. 2006, 27, 1.

    52. [52]

      (50) Li, X.; ng, L. D.; Yang, Z. Z. Sci. China Ser. B-Chem. 2008, 51, 1221.

    53. [53]

      (51) Cui, B. Q.; ng, L. D.; Zhao, D. X. Acta Phys. -Chim. Sin. 2008, 24, 1035.

    54. [54]

      [崔宝秋, 宫利东, 赵东霞. 物理化学学报, 2008, 24, 1035.]

    55. [55]

      (52) Wang, F. F.; Zhao, D. X.; ng, L. D. Theor. Chem. Acc. 2009, 124, 139.

    56. [56]

      (53) Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; ng, L. D.; Liu, S. B.; Yang, Z. Z. J. Chem. Theory Comput. 2010, 6, 795.

    57. [57]

      (54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian Inc.: Wallingford, CT, 2004.

    58. [58]

      (55) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Phys. Chem. 1984, 81, 3684.

    59. [59]

      (56) Hockney, R. W. Method Comput. Phys. 1970, 9, 136.

    60. [60]

      (57) CRC Handbook of Chemistry and Physics, 84th ed.; Lide, D. R. Ed. CRC Press: Boca Raton, 2003-2004.


  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    6. [6]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    7. [7]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    8. [8]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    13. [13]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    19. [19]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    20. [20]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

Metrics
  • PDF Downloads(1218)
  • Abstract views(2718)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return