Citation: YU Chang-Lin, YANG Kai, YU Jimmy C, PENG Peng, CAO Fang-Fang, LI Xin, ZHOU Xiao-Chun. Effects of Rare Earth Ce Doping on the Structure and Photocatalytic Performance of ZnO[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 505-512. doi: 10.3866/PKU.WHXB20110230 shu

Effects of Rare Earth Ce Doping on the Structure and Photocatalytic Performance of ZnO

  • Received Date: 21 October 2010
    Available Online: 7 January 2011

    Fund Project: 国家自然科学基金(21067004) (21067004) 固体表面物理化学国家重点实验室(厦门大学)开放基金(200906) (厦门大学)开放基金(200906) 江西省教育厅青年科学基金(GJJ10150) (GJJ10150)江西省自然科学基金(2010GZH0048)资助项目 (2010GZH0048)

  • A series of ZnO photocatalysts doped with different amounts of cerium were prepared by co-precipitation and then calcined at different temperatures. The prepared pure ZnO and Ce-doped ZnO samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic activity of the samples was evaluated by the photodegradation of acid orange II under UV light (λ=365 nm) irradiation. FT-IR results showed that ZnO doped with 2% (w, mass fraction) cerium had far more OH groups over the surface of the doped sample than the pure ZnO. At the same time, PL tests indicated that the presence of 2% (w) cerium effectively suppressed the recombination of the photogenerated hole-electron pairs. On the other hand, the calcination temperatures influenced the crystallinity and crystal size of the catalysts. XRD tests indicated that the sample calcined at 500 °C had od crystallinity and a small crystal size while elevated temperature treatment (600-800 °C) would result in sintering and increase the crystal size. At the optimal calcination temperature of 500 °C and at 2% (w) cerium doping the composite photocatalyst had much higher photocatalytic activity and stability compared with pure ZnO. The high photocatalytic performance of the Ce doped ZnO could be attributed to an increase in surface OH groups, high crystallinity and a low recombination rate of electron/hole (e-/h+) pairs.

  • 加载中
    1. [1]

      (1) Zhou, Z. G. Funct. Mater. Info. 2008, 4, 17.

    2. [2]

      [邹志刚. 功能材料信息, 2008, 4, 17.]

    3. [3]

      (2) Yu, C. L.; Zhou, W. Q.; Yang, K.; Rong, G. J. Mater. Sci. 2010, 45, 5756.

    4. [4]

      (3) Yu, C. L.; Yu, J. M. Mater. Sci. Eng. B 2009, 164, 16.

    5. [5]

      (4) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y. Prog. Chem. 2009, 21, 2285.

    6. [6]

      [温福宇, 杨金辉, 宗旭, 马艺. 化学进展, 2009, 21: 2285.]

    7. [7]

      (5) Yu, C. L.; Yu, J. M. Catal. Lett. 2010, 140, 172.

    8. [8]

      (6) Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.

    9. [9]

      (7) Li, Y. X.; Hu, Y. F.; Peng, S, Q.; Lu, G. X.; Li, S. B. J. Phys. Chem. C 2009, 113, 9352.

    10. [10]

      (8) Yu, C. L.; Fan, C. F.; Yu, J. M. Mater. Res. Bull. 2011, 46, 140.

    11. [11]

      (9) Yu, J. G.; Xiang, Q. J.; Zhou, M. H. Appl. Catal. B 2009, 90, 595.

    12. [12]

      (10) Yu, C. L.; Yu, J. M. J. Phys. Chem. Solids 2010, 71, 1337.

    13. [13]

      (11) Yu, C. L.; Yu, J. M.; Chan, M. J. Solid State Chem. 2009, 182, 1061.

    14. [14]

      (12) Yu, C. L.; Yu, J. M. Catal. Lett. 2009, 129, 462.

    15. [15]

      (13) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747.

    16. [16]

      (14) Li, C. Q.; Luo, L. T.; Xiong, G. W. Chin. J. Catal. 2009, 30, 1058.

    17. [17]

      [李长全, 罗来涛, 熊光伟. 催化学报, 2009, 30, 1058.]

    18. [18]

      (15) Xu, B.; Wang, S. L. Chin. Funct. Mater. 2010, 41, 307.

    19. [19]

      [徐波, 王树林. 功能材料, 2010, 41, 307.]

    20. [20]

      (16) Li, Y. X.; Wang, T. H.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20, 1434.

    21. [21]

      [李越湘, 王添辉, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2004, 20, 1434.]

    22. [22]

      (17) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.

    23. [23]

      [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    24. [24]

      (18) Yu, C. L.; Yu, J. M. Mater. Sci. Eng. B 2010, 166, 213.

    25. [25]

      (19) Lin, J.; Yu, J. M. J. Photochem. Photobiol. A 1998, 16, 63.

    26. [26]

      (20) Yu, J. G.; Yu, H. G.; Ao, C. H.; Lee, S. C.; Yu, J. C.; Ho, W. K. Thin Solid Films, 2006, 496, 273.

    27. [27]

      (21) Fu, T. H.; Gao, Q. Q.; Liu, F.; Dai, H, J.; Kou, X. M. Chin. J. Catal. 2010, 31, 797.

    28. [28]

      [傅天华, 高倩倩,刘斐, 代华均, 寇兴明. 催化学报, 2010, 31, 797.]

    29. [29]

      (22) Deng, Q. Y.; Liu, L.; Deng, H. M. Spectrum Analysis Tutorial; Science Press: Beijing, 2002; p68.

    30. [30]

      [邓芹英, 刘岚, 邓惠敏. 波谱分析教程. 北京: 科学出版社, 2003: 68.]

    31. [31]

      (23) McDevitt, N. T.; Baun, W. L. Spectrochimica. Acta 1964, 20, 799.

    32. [32]

      (24) Zhao, Z. C.; Liu, L. L. J. Bohai. Univ (Nat. Sci.) 2009, 30, 317.

    33. [33]

      [赵志成, 刘连利. 渤海大学学报: 自然科学版, 2009, 30, 317.]

    34. [34]

      (25) Gao, L.; Zheng, S.; Zhang, Q, H. Nano TiO2 Photocatalytic Materials and Its Application; Chemical Industry Press: Beijing, 2002; pp 110-111.

    35. [35]

      [高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用. 北京: 化学工业出版社, 2002: 110-111.]

    36. [36]

      (26) Jia, T. K.; Wang, W. M.; Huang, F.; Fu, Z. Y.; Ma, X. H.; Guo, W. Rare Metal Mat. Eng. 2009, 38, 979.

    37. [37]

      [贾铁昆, 王为民, 黄飞,傅正义, 马秀华, 郭伟. 稀有金属材料与工程, 2009, 38, 979.]

    38. [38]

      (27) Yang, Y. Q.; Du, G. H.; Ding, W.; Li, J.; Li, T. B.; Xu, B. S. Chin. J. Inorg. Chem. 2010, 26, 300.

    39. [39]

      [杨永强, 杜高辉, 丁伟, 李洁, 李天宝, 许并社. 无机化学学报, 2010, 26, 300.]

    40. [40]

      (28) Park, K. C.; Ma, D. Y.; Kim, K. H. Thin Solid Films 1997, 305, 201.

    41. [41]

      (29) Su, S.; Lu, S. X.; Xu, W. G. Chin. J. Process. Eng. 2008, 8, 54.

    42. [42]

      [苏苏, 卢士香, 徐文国. 过程工程学报, 2008, 8, 54.]

    43. [43]

      (30) Herrmann, J. M.; Ahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; nzalez-Elipe, A. R.; Fernandez, A. Appl. Catal. B 1997, 13, 219.

    44. [44]

      (31) Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629.


  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    7. [7]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    8. [8]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

    18. [18]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    19. [19]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    20. [20]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

Metrics
  • PDF Downloads(1927)
  • Abstract views(4266)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return