Citation: SHI Yan-Hua, MENG Hui-Min. Electrochemical Behavior of IrO2 Electrodes in the Anodic Electrodeposition of MnO2[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 461-467. doi: 10.3866/PKU.WHXB20110216 shu

Electrochemical Behavior of IrO2 Electrodes in the Anodic Electrodeposition of MnO2

  • Received Date: 26 July 2010
    Available Online: 29 December 2010

    Fund Project: 国家高技术研究发展计划(863)项目(2007AA05Z103)资助 (863)项目(2007AA05Z103)

  • The electrochemical behavior of IrO2 electrodes in a MnSO4 plating solution and in a H2SO4 solution at different temperatures was investigated by polarity curve and cyclic voltammetry methods. The anodic electrode deposition was carried out at different current densities according to the polarity curve obtained in the bath and the deposition velocity was measured. The results show that the anodic electrode deposition reactions and the O2 production reaction on the IrO2 electrode in the bath occur simultaneously and the former reaction obviously restrains O2 production. The process of MnO2 electrodeposition onto IrO2 is complicated and a Mn3+ intermediate product is produced, which can be oxidized to Mn4+ during the electrode deposition. Mn3+ is hydrolyzed at the same time as the oxidation and its hydrolysate desorbs, which causes an obvious reduction in current efficiency for the MnO2 anodic electrodeposition. A potential range exists for the MnO2 anodic electrode deposition and we also found a maximum value for the deposition velocity within the potential range.

  • 加载中
    1. [1]

      (1) B?etislav, K.; Ji??, V.; Jana, V. Electrochim. Acta 2002, 47, 2365.

    2. [2]

      (2) Feng, H.; Shao, C.;Wei, Y. L.; Zhou, X. Y.; Lai, Y. T.; Feng, S.; Chen, Y. L.; Zhao, K.; Shen, Y. J.; Liu,W.W. Applied Chemistry 2006, 35(12), 918

    3. [3]

      [冯辉, 邵晨, 卫应亮, 周雪雅, 赖玉天, 冯硕, 陈玉磊, 赵凯, 申玉江, 刘文文. 应用化学, 2006, 35(12), 918.]

    4. [4]

      (3) Guo, X. Y.; Liu, H. H.; Li, D.; Tian, Q. H.; Xu, G. Mining and Metallurgical Engineering 2007, 27(1), 50.

    5. [5]

      [郭学益, 刘海涵, 李栋, 田庆华, 徐刚. 矿冶工程, 2007, 27(1), 50.]

    6. [6]

      (4) Hu, J. M.;Wu, J. X.; Meng, H. M.; Zhu, Y. R.; Sun, D. B.; Yang, D. Acta Metall. Sin. 2000, 13, 849.

    7. [7]

      (5) Pani?, V.; Dekanski, A.; Miškovi?-Stankovi?, V. B.; Milonji?, S.; Nikoli?, B. J. Electroanal. Chem. 2005, 579(1), 67.

    8. [8]

      (6) Jin, S. X.; Ye, S. Y. Electrochim. Acta 1996, 41(6), 827.

    9. [9]

      (7) Ke, X. B.; Tang, D. Heat Treat. Met. 2008, 33(2), 82.

    10. [10]

      [柯学 标, 唐电. 金属热处理, 2008, 33(2), 82.]

    11. [11]

      (8) Xia, X. Battery 2005, 35(1), 27.

    12. [12]

      [夏熙. 电池, 2005, 35(1), 27.]

    13. [13]

      (9) Xia, X.; Mokhtar, Imit. Chinese Battery Industry 2002, 7(3-4), 169.

    14. [14]

      [夏熙, 木合塔尔依米提. 电池工业, 2002, 7(3-4), 169.]

    15. [15]

      (10) Hashimoto, K.; Habazaki, H.; Yamasaki, M.; Meguro, S.; Sasaki, T.; Katagiri, H.; Matsui, T.; Fujimura, K.; Izumiya, K.; Kumagai, N.; Akiyamae, E. Mater. Sci. Eng. A 2001, 304-306(31), 88.

    16. [16]

      (11) Tench, D.;Warren, L. F. J. Electrochem. Soc. 1983, 130(4), 869.

    17. [17]

      (12) Castro, E. B.; Gervasi, C. A. Int. J. Hydrogen Energy 2000, 25(12), 163.

    18. [18]

      (13) Fujimura, K.; Matsui, T.; Habazaki, H.; Kawashima, A.; Kumagai, N.; Hashimoto, K. Electrochimi Acta 2000, 45, 2297.

    19. [19]

      (14) Fujimura, K.; Matsui, T.; Izumiya, K.; Kumagai, N.; Akiyama, E.; Habazaki, H.; Kawashima, A.; Asami, K.; Hashimoto, K. Mater. Sci. Eng. A 1999, 267(2), 254.

    20. [20]

      (15) Izumiya, K.; Akiyama, E.; Habazaki, H.; Kumagai, N.; Kawashima,A.; Hashimoto, K. Electrochimi Acta 1998, 43, 3303.

    21. [21]

      (16) Tseung, A. C. C. Electrochimi. Acta 1977, 22, 3l.

    22. [22]

      (17) Simond, O.; Schaller, V. Comninellis, C. Electrochimi. Acta 1997, 42, 2009.

    23. [23]

      (18) Hu, J. M.; Meng, H. M.; Zhang, J. Q.;Wu, J. X.; Yang, D. J.; Cao, C. N. Acta Metallurgica Sinica 2001, 37(6), 628.

    24. [24]

      [胡吉 明, 孟惠民, 张鉴清, 吴继勋, 杨德钧, 曹楚南. 金属学报, 2001, 37(6), 628.]

    25. [25]

      (19) Hu, J. M.; Zhang, J. Q.; Zhang, J. T.; Cao, C. N. Acta Phys. -Chim Sin. 2004, 20(7), 740.

    26. [26]

      [胡吉明, 张鉴清, 张金涛, 曹楚南. 物理化学学报. 2004, 20(7), 740.]

    27. [27]

      (20) Wang, X. M.; Hu, J. M.; Zhang, J. Q. Acta Phys.-Chim Sin. 2009, 25(9), 1725.

    28. [28]

      [王晓梅, 胡吉明, 张鉴清. 物理化学学报, 2009, 25(9), 1725.]

    29. [29]

      (21) Wu,W. C.; Feng, H. Q.;Wu, K. Z. Manual Book of Standard Electrode Potentials; Science Press: Beijing, 1991; pp159-160

    30. [30]

      [吴维昌, 冯洪清, 吴开治. 标准电极电位数据手册. 北京: 科学 出版社, 1991: 159-160]

    31. [31]

      (22) Colin, J.; Clarke.; Gre ry, J. B.; Scott,W. D. J. Electrochem. Soc. 2006, 51(1), 5773.

    32. [32]

      (23) Liu, Z. J.; Zhang,W. G. Chlor-Alkali Industry 2009, 45(5), 12.

    33. [33]

      [刘振江, 张卫国. 氯碱工业, 2009, 45(5), 12.]

    34. [34]

      (24) Jiang, Y. L.;Wu, Y. S. Corrosion Science and Protection Technology 2004, 26(4), 395.

    35. [35]

      [姜应律, 吴荫顺. 北京科技大 学学报, 2004, 26(4), 395.]

    36. [36]

      (25) Zha, Q. X. Introduction of Electrode Kinetics; Science Press: Beijing, 2002; pp77-80.

    37. [37]

      [查全性. 电极过程动力学导论. 北 京: 科学出版社, 2002: 77-80.]


  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

Metrics
  • PDF Downloads(1206)
  • Abstract views(2507)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return